

SG TYPE

Туре		Whole system Speed Guide Rail										
SGR	SGB	W	Н	W _R	Η _R	Т	Shaft	Ρ	m	m'	а	Weight (g/m)
	3											
10	4	28	23	28	14	4.5	Ø5	60	Ø3.4	Ø6	3.3	1,051
	5											
	3											
15	4	46	32	46	18.5	8	Ø6	120	Ø4.5	Ø8	6	1,784
	5											
	3											
15N	4	44	32	38	18.5	8	Ø6	120	Ø4.5	Ø8	6	1,651
	5											
	3											
20	4	60	36	60	22.5	9	Ø8	120	Ø5.5	Ø9.5	6	2,744
	5											
	3											
20N	4	47	36	47	22.5	9	Ø8	120	Ø5.5	Ø9.5	6	2,427
	5											
	3											
25	4	70	44	69	26	10	Ø10	120	Ø6.6	Ø11	7	3,873
	5											
	3											
35	4	100	55	90	35	12	Ø12	160	Ø9	Ø14	8.5	6,442
	5											

Winners 28 Technology

Dimension table 🤎

Ту	ре	Speed Guide Block										
SGR	SGB	W _B	H _B	L	Ľ	T ₃	А	В	S	Bearing q'ty	Eccentric position	Weight (g/ea)
	3			68	47					3	2	52
10	4	28	8	84	63	10.5	18	21	M4	4	24	70
	5			99	78					5	135	87
	3			74	52					3	2	110
15	4	46	12	90	68	11	36	32	M5	4	24	145
	5			106	84					5	135	185
	3			82	60					3	2	105
15N	4	44	12	102	80	11	26	26	M5	4	24	140
	5			122	100					5	2 4 5	170
	3			94	72					3	2	210
20	4	60	12	116	94	11	40	50	M6	4	24	280
	5			138	116					5	245	350
	3			102	80					3	2	195
20N	4	47	12	128	106	11	30	38	M6	4	24	265
	5			154	132					5	245	325
	3			122	100					3	2	460
25	4	70	16.5	155	133	11	45	57	M8	4	24	615
	5			188	166					5	245	775
	3			162	140					3	2	1100
35	4	100	18	207	185	11	62	82	M10	4	24	1450
	5			252	230					5	245	1835

Winners 29 Technology

SG WIDE TYPE

Туре	Whole	system				;	Speec	I Guide	Wide	Rail						Sp	eed G	Guide	Wide	Block		
SGW	w	Н	W _R	H _R	Т	С	D	Shaft	Ρ	m	m'	а	Weight (g/m)	WB	Η _B	L	Ľ	T ₃	А	В	S	Weight (g/ea)
10	67	23	67	14	4.5	40	13.5	Ø5	60	Ø3.4	Ø6.5	3.3	1,051	67	8	87	67	10	35	42	M4	70
15	88	32	88	18.5	8	48	20	Ø6	120	Ø4.5	Ø8	4.5	1,784	88	12	102	80	11	50	52	M5	120
20	100	36	100	22.5	9	60	20	Ø8	120	Ø5.5	Ø9.5	5.5	2,744	100	12	112	90	11	60	56	M6	240
25	120	44	120	26	10	70	25	Ø10	120	Ø6.6	Ø11	6.5	3,873	120	16.5	122	100	11	60	60	M8	520

OSG TYPE

(O)

κ

Туре	Whole :	system			Οι	ut-side Sp	eed (Guide	Rail					C)ut–sio	de Sp	eed G	auide	Block		
OSG	WB	Н	W _R	H _R	H _R '	Shaft	Ρ	m	m'	а	Weight (g/m)	WB	Η _B	к	L	Ľ'	T ₃	А	В	S	Weight (g/ea)
20	60	32	20	20.25	11.45	Ø6	60	Ø5.5	Ø9.5	5.5	1,230	60	12	4.3	82	60	11	38	38	M5	120
25	80	37	25	24.75	13.93	Ø8	60	Ø6.6	Ø11	6.5	2,015	80	12	4.2	102	80	11	51	51	M6	240
30	100	46	30	30.3	16.18	Ø10	60	Ø6.6	Ø11	6.5	2,987	100	16.5	5.2	122	100	11	61	61	M8	520
40	130	55	40	36.2	18.7	Ø12	60	Ø9	Ø14	9	5,216	130	18	6.2	152	130	11	84	84	M12	1130

 \odot

PSG TYPE

• PSG Block Outline Drawing

TYPE	W	Н	WR	WB	HR	HB	А	В	Ľ'	L	Т	Shaft
PSG	118.5	77	118.5	111.5	53	21.5	44	90.5	164	186	11	ø10

LSG TYPE

TYPE	W	н	WR	WB	HR	HB	А	В	Ľ	L	т	Shaft
LSG-5	67	41.5	67	67	32.5	8	35	42	67	87	10	ø5
LSG-6	60	48.7	60	59	35	12	45	39	85	101	5	ø6
LSG-8	100	62.5	100	100	49	12	60	56	90	112	11	ø8
LSG-10	120	72.5	120	120	54.5	16.5	60	60	100	122	11	ø10

Speed Guide[®] Accessories

Speed Guide[®]'s accessories are Winner's know-how's result from two year's continuous effort. All accessories are precision machined,hardened and corrosion-resisting. Since Winner bearings have enough stock, Winner are ready to prompt delivery.

Speed Guide"'s Double-low bearing

1) Double angular contacting deep-groove bearing's application table

Bearing ID	4mm	5mm	6mm	8mm	12mm
SGB	10	15N, 15	20N, 20	25	35
OSGB	15	20	25	30	40

How to order: SG-BR(A) No 5, 8pcs

no-recording : standard bearing

- Bearing Number : same with general bearing Number

(A) : radent treatment for clean room

							Ba	asic stati	c load (N	۷)
Bearing I.D	н	H1	φS	φD	¢ D2	α				
							Cy(N)	Суо	Cz	Czo
4mm	7	6	5	13	4	gothic arch	330	600	80	130
5mm	9.75	8	6	17	5	gothic arch	890	1610	200	340
6mm	12.75	11	8	24	6	gothic arch	2280	4100	550	1080
8mm	15.5	14	10	30	8	gothic arch	3500	6000	850	1700
12mm	22	19	12	42	12	gothic arch	5200	9800	1910	4190

accessories

φA

C

⊢

φB

Speed Guide® eccentric nut

TYPE	А	В	С	D	E	F	K
SG-10/0SG15	12	6	6.5	M4	М3	2.5	0.5
SG-15,15N/OSG-20	16	8	8.5	M5	M4	3.4	0.5
SG-20,20N/OSG-25	20	8	10.5	M6	M4	3.4	0.5
SG-25/OSG-30	25	11	13.5	M8	M4	3.4	1
SG-35/0SG-40	35	12	18.5	M12	M4	3.4	1

φB

L-lench Hmm

Speed Guide[®]Bolt for bearing

TYPE	Α	В	С	D	Н	Т	L
SG-10/OSG-15concentric	4	7	8	3	2.02	1	17
SG-10/OSG-15eccentric	4	7	8	3	2.02	1	17
SG-15,15N/OSG-20concentric	5	8	12	5	2.5	1	21.75
SG-15,15N/OSG-20eccentric	5	8	5	5	2.5	1	21.75
SG-20,20N/OSG-25concentric	6	10	12.05	5	3	1.2	24.75
SG-20,20N/OSG-25eccentric	6	10	5	5	3	1.2	24.75
SG-25/OSG-30concentric	8	13.2	16.6	5	4	1.5	32
SG-25/OSG-30eccentric	8	13.2	8	5	4	1.5	32
SG-35/OSG-40concentric	12	18	18,1	7	5	2	40
SG-35/OSG-40eccentric	12	18	9	7	5	2	40

Speed Guide[®] Rubber-plate for seal

TYPE	W	L3	Н3	Т3'
SG-10UU	28	18.5	17.1	10.5
SG-15UU	45	26	23	11
SG-15NUU	43	26	23	11
SG-20UU	59	38.38	25.5	11
SG-20NUU	46	25.38	25.5	11
SG-25UU	69	40.23	32.5	11
SG-35UU	99	48.5	41.5	11

TYPE	W	H3	L3	φU	Т3'
OSG-15UU	44	18.5	17.2	3.4	11
OSG-20UU	59	22	38	5.5	11
OSG-25UU	79	24.5	51	6.5	11
OSG-30UU	99	31.5	61	6.5	11
OSG-40UU	129	40	84	6.5	11

Felt Type

Winners 35 Technology

Speed Guide[®] Rail

1) Standard length and others' length of Speed Guide

Туре		Standard length	Standard length of Aluminum base	minimum length
	10,15N, 15	4000mm		60mm
SG	20N, 20		4000mm	80mm
	25, 35			140mm
	15, 20			70mm
OSG	25			90mm
	30, 40			150mm

SWhen you need over standard length, it will be machined by special order to connect the ends of shaft.

2) Speed Guide Rail that corrosion-resisting shaft is pressed into with straightness.

Users can order Speed Guide for corrosion-resisting in a low price immediately. Rusts in Guides cut down the life and damage the machine's quality. Speed Guide's rail has elegant exterior and no-scar by anodizing, so it raises the machine's quality and shows maximum ability in clean room.

Rail shaft	standard hardened shaft	High-carbon chrom plating bearing steel	stainless shaft			
material	STB-2(SUJ-2)	STB-2(SUJ-2)	SUS 440C			
HRC(heat treatment hardness)	62±2	64±2	60±2			
The others	Winner can offer the others material depends on user' asking					

3) Screw processing for lateral installation of Speed Guide

One of Speed Guide's powerful feature is to use for high load bearing's cross direction load and possible for lateral assembling of rail strong for slack. It shows powerful applications for high speed system such as linear moter system.

4) Opened-Type Speed Guide Rail (OSGR)

OSGR is the best system for machine asked light weight. As we guarantee shaft's straightness, aluminum base's modifications when processing shaft instering can be minimized and the precision is raised with maximum and moment load ability is optimized.

Limitless length, running precision (\pm 0.015mm) without accumulation, light weight, low priced wear-resistance rail, big Mx direction's moment load, and easy for assembling rails, are po werful applications for OSGR

Speed Guide[®] precision

Since the alumium base is straightened through precision extrusion, the dimension precision less $\pm 10 \mu$ m/4000mm is guaranteed. In case of being asked the running precision, as making the base-face flat, you can gain ± 0.02 mm running precision .

Since Speed Guide Block is a clearance adjustment type. It can be adjust radial clearance to 0μ m from all side of direction X,Y,Z. It useful for automatic machine being asked repetition direction precision.

The dimension precision of rail

The auto shaft-inserting machine is developed by Winner Bearings' know-how So even though heat-treated shaft is pressed into the rail, the machine makes that rail dimension precision raises within ± 0.01 mm.

Speed Guide[®] running precision

Speed Guide°'s precision doesn't have effect on the system length. Since the shaking of bearing is less ± 3 μ m, the running precision guarantees according to rail length without accumulation .

unit:mm

Precision condition	SG	OSG
block C's running straightness about "A"	±0.02	±0.015
block D's running straightness about "B"	±0.015	±0.02
dimension allowed difference for SG' all height M	±0.15	±0.1
mutual difference about each block for height M	±0.03	±0.025
dimension allowed difference for SG' all width W	±0.15	±0.1
mutual difference about each block for width W	±0.03	±0.03

▶ The precision was applicated for whole Guide Rail length.

*It isn' t included bottom precision . *In case of rail assemble, keep the regular tork.

How to measure the running precision

The operation situation of Speed Guide[®]

Maximum driving speed	Maximum acceleration Running allowable ter	
10m/sec	50 ^m /s	-20°C~80°C

Speed Guide®

Speed Guide[®] load transmission ability

SG and OSG is designed to keep the moment of all-axis and the load of all direction. The load transmission ability in catalogue is safe workingload including safe static load cause, and several driving condition.

Coordinate axes

Working directions of the load and moment on this cataiogue depend on below drawings.

Speed Guide[®] load and moment comparative table(OSG)

load transmission ability

The load and the moment for basic safe working condion for

Load			Mx Mz Coax				
Ту	Туре		Basic static safe working load(N)	Basic dynamic safe working load(N)	Basic static safe working load(N)	Basic dynamic safe working load(N)	
	Load direction		Corad	Crad	Coax	Cax	
		3	432	240	250	230	
	10	4	623	343	350	322	
		5	864	480	490	450	
		3	890	490	490	460	
	15N	4	1,210	700	924	660	
		5	1,400	980	1,288	920	
	15	3	890	490	490	460	
		4	1,210	700	924	660	
		5	1,400	980	1,288	920	
	20N	3	1,610	820	980	700	
SGB		4	1,930	1,400	1,560	1,000	
		5	2,120	1,960	2,230	1,400	
	20	3	1,610	820	980	700	
		4	1,930	1400	1,560	1,000	
		5	2,120	1,960	2,230	1,400	
		3	2,800	1,470	1,764	1,260	
	25	4	3,180	2,100	2,520	1,800	
		5	3,420	2,940	3,528	2,520	
		3	3,990	2,800	3,332	2,380	
	35	4	4,890	4,000	4,760	3,400	
		5	5,320	5,600	6,664	4,760	
	20		1,210	700	924	660	
OSCR	25		1,930	1,400	1,560	1,000	
	30		3,180	2,100	2,520	1,800	
	40		4,890	4,000	4,760	3,400	

Speed Guide[®] 's life calculation

Load		oad	Mx 2 Mz Coax			
Ту	oe	$\overline{\ }$	Dyna	amic allowed moment	(Nm)	
	Load dired	ction	M×	Му	Mz	
		3	2.6	2.8	5.0	
	10	4	6.4	6.8	7.1	
		5	9.0	18.0	19.1	
		3	10.2	9.2	9.8	
	15N	4	14.5	13.2	14	
		5	20.3	37	39	
	15	3	13.8	7.4	7.8	
		4	19.8	21.1	22.4	
		5	27.7	44.3	47	
	20N	3	29.4	25.4	18.2	
SGB		4	42	72.8	52	
		5	58.8	152.8	109.2	
	20	3	42.1	21.5	15.4	
		4	60.2	61.6	44	
		5	84.2	129	92.4	
		3	67.62	48.51	41.58	
	25	4	96.6	138.6	118.8	
		5	135.24	291.06	249.48	
		3	159.6	126	126	
	35	4	228	360	360	
		5	319.2	758	756	
	20		23.03	33.41	35.47	
OSCE	25		62.76	95.2	68	
USGB	30		105.98	172.54	147.89	
	40		280.64	448	448	

Speed Guide[®]'s Construction analysis

1) Speed Guide[®] Rail SGR's slack calculation

Strong points of SGR are to use as machine costruction in itself and to install on aluminium profile without additional machining. There can be a lot of applications and cost saving effects when SGR is used for lateral or when rails are installed with SGB on its bottom. To use efficiently these strong functions, we show you as following information.

(unit=kgf)

2) Safe load and slack per unit length(L=1000mm)

Eixing wov	Tupo	Standard inst	allation	Side installation	
FIXING Way	туре	Safe load(kgf)	Slack(mm)	Safe load(kgf)	Slack(mm)
	SGB-15N	50	8.8	164.6	1.5
1	SGB-15	46.1	11.9	219.9	1.3
	SGB-20N	81.7	7.6	293.7	1.2
	SGB-20	148	10.5	444	1
Dette en de Guard	SGB-25	145.2	8.7	702.3	0.8
Both ends fixed	SGB-35	360.6	6.1	1621.7	0.6
	OSGB-20	39.2	2.7	37.3	3
0 0 0	OSGB-25	70.2	2.1	69	2.3
	OSGB-30	120.7	1.9	108.3	2.2
	OSGB-40	243.8	1.5	247.8	1.6
	SGB-15N	25	17.5	82.3	3
	SGB-15	23.1	23.8	109.9	2.5
	SGB-20N	40.9	15.3	146.8	2.5
	SGB-20	74	21	222	1.9
Dath and a non	SGB-25	72.6	17.4	351.2	1.7
boun enus open	SGB-35	180.3	12.2	810.9	1.3
	OSGB-20	14.7	4.1	104	4.5
0 00000	OSGB-25	35.1	4.3	34.5	4.6
	OSGB-30	60.3	3.9	54.2	4.4
	OSGB-40	121.9	3	123.9	3.1
	SGB-15N	33.3	0.6	109.8	1.8
	SGB-15	30.7	0.3	146.6	1.5
	SGB-20N	54.5	0.4	195.8	1.5
	SGB-20	98.7	0.4	296	1.2
One and fixed	SGB-25	96.8	0.2	468.2	1
	SGB-35	240.4	0.2	1081.2	0.8
	OSGB-20	26.2	3.2	24.9	3.1
0 000 0 0	OSGB-25	46.8	2.6	46	2.5
	OSGB-30	80.4	2.3	72.2	2.1
	OSGB-40	162.5	1.8	165.2	1.8
	SGB-15N	6.2	70.1	20.6	12.2
	SGB-15	5.8	95.1	27.5	10
	SGB-20N	10.2	61.1	36.7	9.9
	SGB-20	18.5	84.2	55.5	7.7
One and anon	SGB-25	18.2	69.5	87.8	6.7
one end open	SGB-35	45.1	48.6	202.7	5.1
	OSGB-20	4.9	21.7	4.7	24.1
	OSGB-25	8.8	17.1	8.6	18.6
	OSGB-30	15.1	15.5	13.5	17.7
	OSGB-40	30.5	11.9	31	12.5

Safety factor S=3 (S=rail's yield strength)

• The use of load table for Speed Guide[®] (kgf, 1m/s standard)

* Load life : Working load satisfying 6,000hr

Distance load : Working load satisfying 6,000km

Speed Guide[®] installation

Speed Guide guarantees the precision driving over entire rail without the accumulation of tolerance. Since beairng's Gothic Arch groove and shaft have two point contact, in case that users don't need the precision running, as a merit of automatic self-aligning construction, ground flat working doesn't need specially.

You have to mind below factors to install speed guide.

The running precision The running situation The load and moment The running speed

1) Speed Guide rail (O)SGR's precision assemble

When SGB installation, the side having less bearing is basic face.

- ① Remove the contamination
- ② After attaching the rail in installation basic face, joint attaching bolt
- ③ While jointing the push bolt, guarantee side straightness
- ④ Tighten rail in turn by joining tork on the basis of below joint tork on next page
- (5) After assembling basic rail, insert SGB (After considering the load and moment, decide the block's direction)

Generally, the side located in eccentric nut is basic face and when SGR assembling on bottom, the basic face have to be inside and when assembled in lateral, the block's basic have to be upperside.

- For fluctuating rail's exact installation, we recommend following methods
- (6) Temporary- connect tables on SGB 2pcs of basic rail and on SGB 2pcs of fluctuating rail
- ⑦ Tighten two bolts on temperary-connect table. One is on (O)SGB of basic rail the other is on (O)SGB) of fluituating rail
- ⑧ While checking joint resistance, joint assembling bolt in fluctuating rail one by one
- (9) Joint last temporary-connect bolt in table into diagonal direction

Bolt/Nut	M4	M5	M6	M8	M10	M12
Tork(Nm)	2.7	5.5	9.5	23	46	80

2) Block's clearance adjustment.

Speed Guide's block, SGB or OSGB, is designed to stand double-row deep groove bearing's centrifugal and axial load. The eccentric nut raises the (O)SGB's load and life by precision repetition without clearance and is designed to esay for clearance adjustment.

All the Speed Guide realized ZERO clearance in order to keep the precision running.

Two bearings are fixed in one side of shaft and, as the last one (in case of SGB 3 1pcs, in case of SGB4 2pcs, in case of SGB5 3pcs) is eccentric nut, entire bearings do rolling motion by regular contact pressure. Accordingly, when eccentric adjustment isn't right for block, the life will be reduced because of deflection load.

Suitable eccentric adjustment guarantees long-life

Clearance adjust

Speed Guide[®] Clearance adjust

Speed Guide is shipped in standard goods assembled the No.1 & 3 bearings, as a fix-axis.

(1) Insert Eccentric nuts in nut holes on block

- when it is hard to insert, it can be inserted if you use bearing bolt to push a eccontric nut in nutholes of block
- ② After temporary-joint the bearing bolt in eccentric nut and inserting SGB in SGR, temporary-joint the eccentric adjust position.

③Take out SGB which is adjusted temporarily from SGR

(4) In situation that eccentric temporary-adjustment, joint the eccentric nut and bearing bolt by joint tork in the catalogue.

⑤Insert SGB in SGR

 $^\circ$ (6) In case of pre-load, turn the eccentric nut into clock opposite side over 90 $^\circ$

⑦In situation fixing the eccentric adjust position, joint the eccentric nut and bearing bolt againby joint tork in catalogue

⑧Insert SGB in SGR

- (9)Adjust the pre-load with turning the eccentric nuts into clock direction In case of turning pre-load excessively, return No 6 In case of SGB having over four bearings, after adjust according to No 6 order, adjust No 5 bearing's clearance according to same method
- ① After pre-load adjust, check rolling motion in shaft face Eccentric nut's hole indicate the pre-load and in case of block having four bearings, what the eccentric nut keeps the regular direction means same pre-load, and it is good for life and load.

selection

Speed Guide[®] 's installation example

Winners 50 Technology

SERO[®] & Speed Guide[®] Life time Calculation

● SERO & Speed Guide의 Lifespan Calculation

 $L_{km} = 100 \bullet \left(\frac{C}{F} \cdot \frac{f_c}{fi} \cdot fh\right)^3$

• F = 유효하중 (N) / Effective load

$$F = F_2 + (\frac{F_3}{Fz} + \frac{Mx}{M_1} + \frac{My}{M_2} + \frac{Mz}{M_3}) \bullet Fy$$

- F1 : x방향 하중 / Force in x-direction
- F2 : y방향 하중 / Force in y-direction
- F3 : z방향 하중 / Force in z-direction
- Fy : y방향 정정격하중 / Effective static load in

y-direction

- M1:x방향 모멘트 / Moment in x-direction
- M2:y방향 모멘트 / Moment in y-direction
- M3 : z방향 모멘트 / Moment in z-direction
- Mx, My, Mz : 정정격모멘트 /

Static moment in each direction

• fc = Contact factor(in case of SERO, regulating about 0.8)

Quantity of block assembled for a unit	Contact factor FC
1	1.00
2	0.81
3	0.72
4	0.66
5	0.61

• Case of Speed Guide

 C(N) = Basic dynamic safe working load Predicting the stratagemical life of Speed Guide, it adds up the basic dynamic safe working load of the unit bearing as the quantity of bearing.

-				
impact vibration	Speed	진동 측정기(G)	Fw	
No impact vibration	In case of low speed $C \le 0.5$		1~15	
from outside	V≦15m/min	G=0.0	1.91.0	
Rarely no impact	In case of middle speed	05 <g<10< td=""><td>15~20</td></g<10<>	15~20	
vibration	15≺V≦60m/min	0.0 \0=1.0	1.5 - 2.0	
Impact vibration	In case of high speed	10 <g<20< td=""><td>20~25</td></g<20<>	20~25	
from outside	V>60m/min	1.0 \G=2.0	2.0**2.0	

• fi = Load factor

 $P = F_w \cdot P_c$

- P : Load N
- Pc: Calculation load N
- Fw: Load factor
- V : Conveying speed per minute m/min

• fn = Temperature factor

