## CONTENTS

### (a) Linear Rail System

| <ul> <li>Technical Data</li> <li>The Types of Linear Rail System</li> <li>SBI High-load Linear Rail System</li> <li>SBI-FL/FLS/FLL</li> <li>SBI-SL/SLL</li> <li>SBI-HL/HLS/HLL</li> <li>SBI-CL/CLS/CLL</li> <li>SBI-FV</li> <li>SBI-SV</li> </ul> | <ul> <li>a)/2</li> <li>a)/44</li> <li>a)/46</li> <li>a)/66</li> <li>a)/68</li> <li>a)/70</li> <li>a)/72</li> <li>a)/74</li> <li>a)/76</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| • SBG Standard Linear Rail System<br>SBG-FL/FLL<br>SBG-SL/SLL<br>SBS-SL/SLL/HL/HLL<br>SBS-FV<br>SBS-SV                                                                                                                                            | <ul> <li>a)/78</li> <li>a)/100</li> <li>a)/102</li> <li>a)/104</li> <li>a)/106</li> </ul>                                                        |

| • SPG / SPS Spacer Linear Rail System<br>SPG-FL/FLL<br>SPG-SL/SLL<br>SPS-SL/SLL/HL/HLL<br>SPS-FV<br>SPS-SV | <ul> <li>a)/108</li> <li>a)/110</li> <li>a)/112</li> <li>a)/114</li> <li>a)/116</li> <li>a)/118</li> </ul> |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| • Miniature Linear Rail System                                                                             | @/120                                                                                                      |
| SBM/SBML                                                                                                   | @/130                                                                                                      |
| SBMW                                                                                                       | @/132                                                                                                      |
| • SBC-ROSA Roller Linear Rail System                                                                       | @/134                                                                                                      |
| MG-LC/LL                                                                                                   | @/156                                                                                                      |
| MG-SC/SL                                                                                                   | @/158                                                                                                      |
| <b>b</b> Ball Screw                                                                                        |                                                                                                            |

| <sub>(b)</sub> /2    | S                                                                                                    |
|----------------------|------------------------------------------------------------------------------------------------------|
| (b)/46<br>(b)/50     | SI                                                                                                   |
| ©/52<br>©/54         | SI                                                                                                   |
| ©/56<br>©/60<br>©/62 | • C<br>K<br>SI<br>SI                                                                                 |
|                      | <ul> <li>b)/46</li> <li>b)/50</li> <li>b)/52</li> <li>b)/54</li> <li>b)/56</li> <li>b)/60</li> </ul> |

| © Support Unit               |              |
|------------------------------|--------------|
| • Fixed-End Support Unit     | ©/2          |
| FK                           | ©/4          |
| FK-DS(T)                     | ©/6          |
| BK                           | ©/8          |
| BK-DS                        | ©/10         |
| EK                           | ©/12         |
| AK                           | ©/14         |
| • Supported-End Support Unit | ©/16         |
| FF                           | ©/18         |
| FF-DS(T)                     | c)/20        |
| BF                           | c)/22        |
| BF-DS                        | <u></u> (24  |
| EF                           | c)/26        |
| AF                           | <u></u> )/28 |
| Recommended Screw End Ma     | chining ©/30 |

| d Linear Bushings                                                                                                                                                               |                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Technical Data                                                                                                                                                                | @/2                                                                                                                                                                                |
| • Asia type Ball Bushing<br>SB, SB-L, SB-AJ, SB-OP<br>SBF, SBF-L<br>SBK, SBK-L<br>SBH, SBH-L<br>SBF-A, SBF-LA<br>SBK-A, SBK-LA<br>SBH-A, SBH-LA<br>SBFC, SBKC, SBHC<br>SC, SC-L | <ul> <li>(d)/18</li> <li>(d)/20~27</li> <li>(d)/32~35</li> <li>(d)/36~39</li> <li>(d)/40~43</li> <li>(d)/44~47</li> <li>(d)/48~51</li> <li>(d)/52~57</li> <li>(d)/58~61</li> </ul> |
| • Europe type Ball Bushing<br>SBE, SBE-L, SBE-AJ, SBE-OP<br>SBFE, SBFE-L<br>SBKE, SBKE-L<br>SBFCE, SBKCE<br>SCE, SCE-L                                                          | <ul> <li>(d)/62</li> <li>(d)/64~71</li> <li>(d)/72~75</li> <li>(d)/76~79</li> <li>(d)/80~83</li> <li>(d)/84~87</li> </ul>                                                          |
| • Compact type Ball Bushing / Option<br>KH<br>SK<br>SHF                                                                                                                         | @/88<br>@/89<br>@/90<br>@/91                                                                                                                                                       |

| $\frown$       | Cross |       |       |       |  |
|----------------|-------|-------|-------|-------|--|
| $(\mathbf{O})$ | Irnss | ROL   | ler i |       |  |
|                | 01055 | T U U |       | ouruc |  |

| • Technical Data                                                                                                                                                                                              | @/2                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Cross Roller Guide SCVR Type<br>SCVR 1<br>SCVR 2<br>SCVR 3<br>SCVR 4<br>SCVR 6<br>SCVR 9                                                                                                                    | <ul> <li>e/8</li> <li>e/20</li> <li>e/22</li> <li>e/24</li> <li>e/26</li> <li>e/28</li> </ul>                                                                                                                 |
| • Cross Roller Table SCVRT Type, SCVRU Type<br>SCVRT 1<br>SCVRT 2<br>SCVRT 3<br>SCVRT 1-A<br>SCVRT 2-A<br>SCVRT 2-A<br>SCVRU 3-A<br>SCVRU 1<br>SCVRU 2<br>SCVRU 3<br>SCVRU 4<br>SCVRU 4<br>SCVRU 6<br>SCVRU 9 | <ul> <li>e)/30</li> <li>e)/34</li> <li>e)/36</li> <li>e)/38</li> <li>e)/40</li> <li>e)/42</li> <li>e)/44</li> <li>e)/46</li> <li>e)/48</li> <li>e)/50</li> <li>e)/52</li> <li>e)/54</li> <li>e)/56</li> </ul> |

#### (f) Robot Carrier Guide

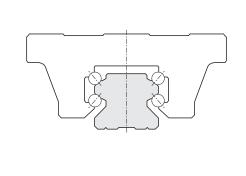
| • Technical Data                    | ſ) <b>/</b> 2 |
|-------------------------------------|---------------|
| • Carriage (3 rollers)              | ①/12          |
| 903X                                | ①/12          |
| <ul> <li>Carriage Option</li> </ul> | ①/14          |
| • Flat Rail                         | ①/16          |
| F308                                | ①/16          |
| F312                                | ①/17          |
| • Rack Rail                         | ①/18          |
| R308                                | ①/18          |
| R312                                | ①/19          |

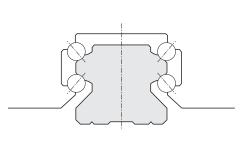




# Linear Rail System

Technical Data / The Types of Linear Rail System / SBI High-load Linear Rail System / SBG Standard Linear Rail System / SPG, SPS Spacer Linear Rail System / Miniature Linear Rail System / SBC-ROSA Roller Linear Rail System


#### **Technical Data**


#### SBC LINEAR RAIL SYSTEM FEATURES

- Circular-Arc raceway structure achieves the high rigidity and large permissible load.
- Four row circular arc groove with 2 points contact creates the same load in all directions.
- DF structure maintains low instrumental errors.
- Low frictional coefficient achieves the high energy efficiency.
- Easy maintenance.
- Improve the productivity of the machine.
- Various options, Easy machine design and Longer life span.

#### Comparison the Linear Rail System with others

| Item        | Linear Rail System     | Plane Ball System | Sliding Friction Guide       |
|-------------|------------------------|-------------------|------------------------------|
| Assembly    | Self-adjusting         | Δ                 | Additional working need      |
| Precision   | Absorbing errors       | Х                 | Machining necessary          |
| Maintenance | Various grease feeding | 0                 | Hard to grease feeding       |
| Sway        | 0                      | 0                 | Х                            |
| Impact      | 0                      | Low rating load   | 0                            |
| Moment      | High rating load       | Low rating load   | Vulnerable to eccentric load |

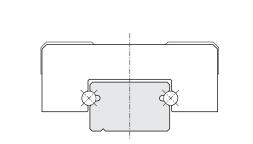




# The Structure of Raceway Groove and Ball Contact

DF structure maintains low instrumental errors.

Applied model : SBI, SBG, SBS, SPG, SPS


**DF Structure** 

**Linear Rail System** 

**Technical Data** 

Circular-Arc Groove, Four Raceway, Two-Point Contact Structure absorb the instrumental errors and create smooth movement even under high load operation.

Applied Model : SBI, SBG, SBS, SPG, SPS



Gothic-Arch Groove, Two Row, Four Point Contact Structure is not effective for absorbing errors but it is optimized for miniaturized machine which is necessary for smooth movement under high load condition.

Applied Model: SBM, SBML, SBMW



- right linear rail system, consider all of the loads.
- Mo : Static Permissible Moment (Mpo, Mro, Myo)

When calculating a load exerted on the linear rail system, both mean load and maximum load need to be considered. Reciprocating machines

create moment of inertia. When selecting the

| Operating           | Load conditions                                          | fs        |
|---------------------|----------------------------------------------------------|-----------|
| Normally stationary | Impact load or machine deflection is small               | 1.0 ~ 1.3 |
| Normally Stationary | Impact or twisting load is applied                       | 2.0 ~ 3.0 |
| Normally moving     | Normal load is exerted or machine<br>deflection is small | 1.0 ~ 1.5 |
|                     | Impact or twisting load is applied                       | 2.5 ~ 7.0 |

• P



These load are maximum moments or torque loads that can be applied to the bearing without damaging the bearing or affecting subsequent dynamic life.

- Mro : Moment in rolling direction
- Mpo : Moment in pitching direction

Static Safety Factor : fs

: Pay Load

• Co : Basic Static Load Rating

• Myo : Moment in yawing direction



### **Technical Data**

#### Load Rating & Life

Under normal conditions, the linear rail system can be damaged by metal fatigue as the result of repeated stress. The repeated stress causes flaking of the raceways and steel balls. The life of linear rail system is defined as the total travel distance that the linear rail system travels until flaking occurs.

#### Nominal Life : L ( km)

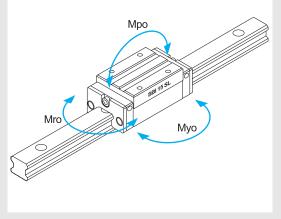
We define the nominal life as the total distance of travel (L=km) without flaking by 90% of a group of an identical group of linear rail systems operating under the same condition.

#### [In case of ball]

 $L = \left(\frac{C}{P}\right)^3 X 50 \text{km}$ 

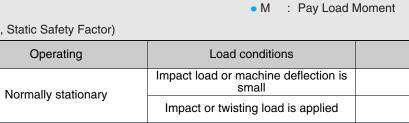
- L : Nominal life • P : Pay load
- C : Basic dynamic load rating

#### [In case of roller]


$$L = \left(\frac{C}{P}\right)^{\frac{10}{3}} X \ 100 \text{km}$$

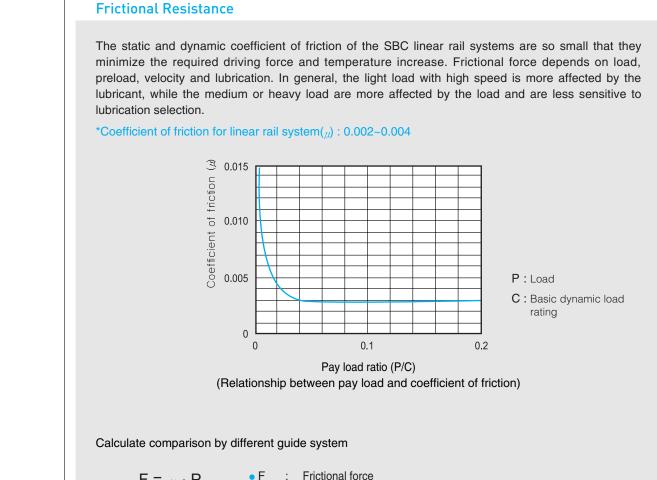
#### Basic Dynamic Load Rating : C (kN)

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50Km of travel carrying the full load.


#### Basic Static Load Rating : Co (kN)

If an excessive load or shock is applied to the linear rail system in the static or dynamic state, permanent but local deformation can occur to the steel balls and raceway. The Basic Static Load Rating is the maximum load the bearing can accept without affecting the dynamic life. This value is usually associated with a permanent deformation of the race way surface of 0.0001 time the ball diameter




fs = (Moment Load)

#### (Table, Static Safety Factor)

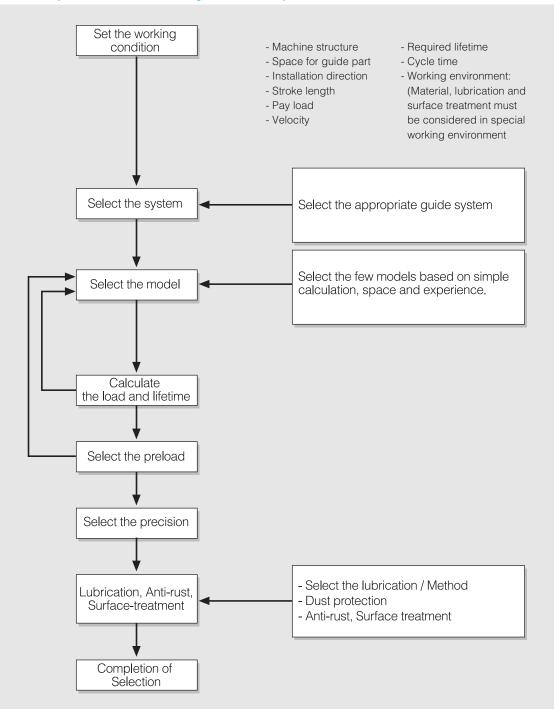


**f**s = (Radial Load)

**Technical Data** 



F = <sub>μ</sub> • P • F


Linear Rail System

**Technical Data** 

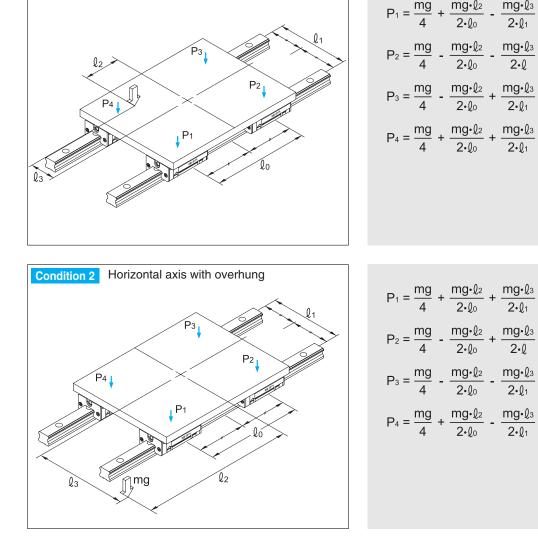
- Coefficient of friction • μ
- P : Load

| (1) Linear rail system         | (2) Sliding linear rail system |
|--------------------------------|--------------------------------|
| P : 5000N                      | P : 5000N                      |
| μ:0.003                        | μ : <b>0.2</b>                 |
| F = 0.003 x 5000N = <b>15N</b> | F = 0.2 x 5000N = <b>1000N</b> |
|                                |                                |

#### The procedure of selecting linear rail system



+  $\frac{\mathsf{mg} \cdot \ell_2}{2 \cdot \ell_0}$  -  $\frac{\mathsf{mg} \cdot \ell_3}{2 \cdot \ell_1}$ 


mg∙l₃ 2·l



- +  $\frac{\mathsf{mg}}{2\cdot \ell_2}$  +  $\frac{\mathsf{mg} \cdot \ell_3}{2 \cdot \ell_1}$  $P_1 = \frac{mg}{4}$  $\frac{\mathsf{mg}\cdot\ell_2}{2\cdot\ell_0}$ \_ mg•ℓ₃ 2•ℓ  $\mathsf{P}_3 = \frac{\mathsf{mg}}{\mathsf{4}} - \frac{\mathsf{mg} \cdot \ell_2}{2 \cdot \ell_0} - \frac{\mathsf{mg} \cdot \ell_3}{2 \cdot \ell_1}$  $\mathsf{P}_4 = \frac{\mathsf{mg}}{\mathsf{4}} + \frac{\mathsf{mg} \cdot \mathfrak{l}_2}{2 \cdot \mathfrak{l}_0} - \frac{\mathsf{mg} \cdot \mathfrak{l}_3}{2 \cdot \mathfrak{l}_1}$



Condition 1 Horizontal axis



### **Linear Rail System**

#### **Technical Data**

#### Select the system / Model

#### 1. Select System

Select the appropriate guide system after considering rigidity, cost of machine and manufacturing time.

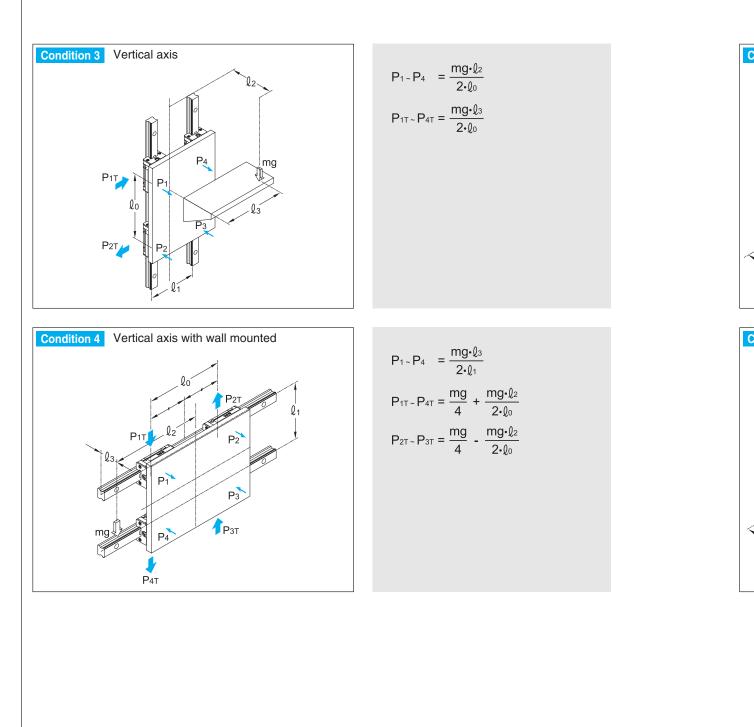
#### 2. Select Model

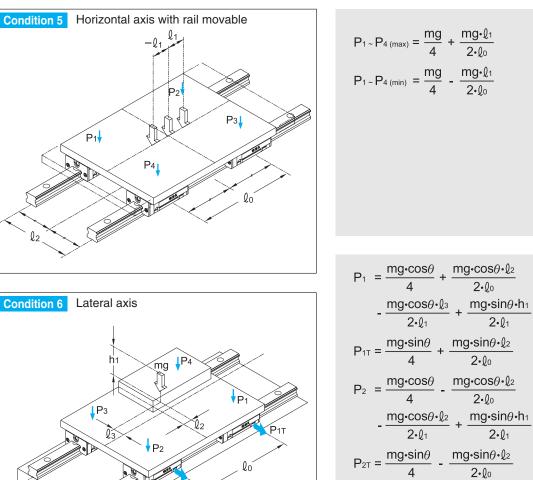
Select the few models based on simple calculation, space and experience.

#### 3. Calculate the load and life time

Judge the expected life time after calculating the load and life time and apply the model to machine design.

#### 3-1. Calculating the applied loads


Loads exerted on a linear rail system vary according to direction. It is important to consider this condition before selecting the type of linear rail systems and model. Refer to the below example when calculating the loads.


#### [Condition of calculating the applied load]

Select the few models after considering space and experience and simple calculation for working conditions.

- m (kg) : Load
- ln (mm) : Distance(mm)
- : Radial load • Pn
- : Lateral load • PnT
- g (m/s<sup>2</sup>) : Gravitational acceleration (= 9.8 m/s<sup>2</sup>)
- V (m/s) : Velocity
- an (m/s<sup>2</sup>) : Acceleration

### **Technical Data**





| Linear | Rail | System |
|--------|------|--------|
|        |      |        |

 $\mathsf{P}_3 = \frac{\mathsf{mg} \cdot \mathsf{cos}\theta}{4} - \frac{\mathsf{mg} \cdot \mathsf{cos}\theta \cdot \ell_2}{2 \cdot \ell_0}$ 

 $\mathsf{P}_{3\mathsf{T}} = \frac{\mathsf{mg} \cdot \mathsf{sin}\theta}{4} + \frac{\mathsf{mg} \cdot \mathsf{sin}\theta \cdot \ell_2}{2 \cdot \ell_0}$ 

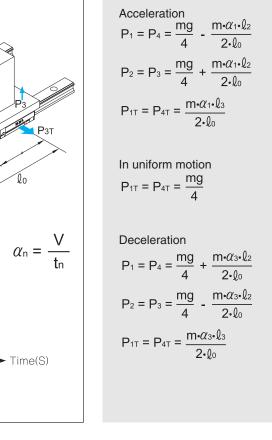
 $\mathsf{P}_4 = \frac{\mathsf{mg} \cdot \mathsf{cos}\theta}{4} + \frac{\mathsf{mg} \cdot \mathsf{cos}\theta \cdot \ell_2}{2 \cdot \ell_0}$ 

 $\mathsf{P}_{4\mathsf{T}} = \frac{\mathsf{mg} \cdot \mathsf{sin}\theta}{4} + \frac{\mathsf{mg} \cdot \mathsf{sin}\theta \cdot \mathfrak{l}_2}{2 \cdot \mathfrak{l}_0}$ 

+  $\frac{\text{mg} \cdot \cos\theta \cdot \ell_3}{2 \cdot \ell_1}$  -  $\frac{\text{mg} \cdot \sin\theta \cdot h_1}{2 \cdot \ell_1}$ 

+  $\frac{\text{mg}\cdot\cos\theta\cdot\ell_3}{2\cdot\ell_1}$  -  $\frac{\text{mg}\cdot\cos\theta\cdot h_1}{2\cdot\ell_1}$ 

**Technical Data** 


### **Technical Data**



| P1 =              | $\frac{\text{mg}\cdot\cos\theta}{4}$ +                                                    | $\frac{mg\cdotcos\theta\cdot\ell_2}{2\cdot\ell_0}$                 |
|-------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                   |                                                                                           | + $\frac{\text{mg}\cdot \sin\theta \cdot h_1}{2\cdot \ell_0}$      |
| P1⊤ =             | $\frac{mg\cdotcos\theta\cdot\ell_3}{2\cdot\ell_0}$                                        |                                                                    |
| P <sub>2</sub> =  | $\frac{\text{mg}\cdot\cos\theta}{4}$ -                                                    | $\frac{mg\cdotcos\theta\cdot\mathfrak{l}_2}{2\cdot\mathfrak{l}_0}$ |
| -                 | $\frac{mg\boldsymbol{\cdot}cos\theta\boldsymbol{\cdot}\ell_3}{2\boldsymbol{\cdot}\ell_1}$ | $\frac{-\frac{mg}{sin\theta}\cdoth_{1}}{2\cdot\mathfrak{l}_{0}}$   |
| P <sub>2T</sub> = | $\frac{mg\cdotsin\theta\cdot\ell_3}{2\cdot\ell_0}$                                        |                                                                    |
|                   | $\frac{\text{mg}\cdot\cos\theta}{4}$ -                                                    |                                                                    |
|                   |                                                                                           | $\frac{mg\cdotsin\theta\cdoth_1}{2\cdot\mathfrak{l}_0}$            |
| Рзт =             | $\frac{mg \cdot sin \theta \cdot \ell_3}{2 \cdot \ell_0}$                                 |                                                                    |
| P4 =              | $\frac{\text{mg}\cdot\cos\theta}{4}$ +                                                    | $\frac{mg\cdotcos\theta\cdot\mathfrak{l}_2}{2\cdot\mathfrak{l}_0}$ |
| +                 | $\frac{mg\boldsymbol{\cdot}cos\theta\boldsymbol{\cdot}\ell_3}{2\boldsymbol{\cdot}\ell_1}$ | + $\frac{\text{mg}\cdot \sin\theta \cdot h_1}{2\cdot \ell_0}$      |
| P <sub>4T</sub> = | $\frac{mg\text{\cdot}sin\theta\text{\cdot}\mathfrak{l}_3}{2\text{\cdot}\mathfrak{l}_0}$   |                                                                    |
|                   |                                                                                           |                                                                    |



### **Technical Data**



Condition 8 Horizontal axis with inertia

**▲** (m/s)

t1

Velocity <

mg

tз

Velocity diagram

a/12

a/15

### Linear Rail System

### **Technical Data**

When calculating a load exerted on the linear rail system, both mean and maximum load need to be considered. Reciprocating machines create moment of inertia. When selecting the right linear rail system, consider all of loads.

**• f**н

| Reverse-radial<br>load is large $f_{H} \cdot f_{T} \cdot f_{C} \cdot C_{OL}$<br>$P_L$ $\geq$ fslaterall load is $f_{H} \cdot f_{T} \cdot f_{C} \cdot C_{OT}$ $=$ fs | Radial load is large | $\frac{f_{H} \cdot f_{T} \cdot f_{C} \cdot C_{O}}{P_{n}} \; \geq \; f_{S}$                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| laterall load is fH·fT·fc·Cot                                                                                                                                       |                      | $\frac{f_{H}{\boldsymbol{\cdot}} f_{T}{\boldsymbol{\cdot}} f_{C}{\boldsymbol{\cdot}} C_{OL}}{P_L} \ \geq \ f_S$ |
| large $P_{nT} \ge f_s$                                                                                                                                              |                      | $\frac{f_{H} \cdot f_{T} \cdot f_{C} \cdot C_{OT}}{P_{nT}} \ge f_{S}$                                           |

3-3. Static Safety Factors (fs)

| fs     | : | Static safety factor                      |
|--------|---|-------------------------------------------|
| Co(N)  | : | Basic static load rating (radial)         |
| Col(N) | : | Basic static load rating (reverse-radial) |
|        |   |                                           |

| Basic static load rating (lateral) |
|------------------------------------|
| 3                                  |

- PL(N) : Calculated load (reverse-radial)
- PnT(N) : Calculated load (lateral)
  - : Hardness factor
- fT : Temperature factor

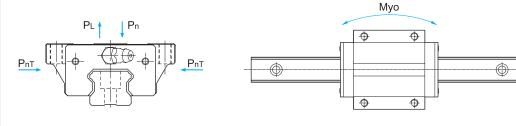
• Pn(N) : Calculated load (radial)

• fc : Contact factor

#### [Value of static safety factor (fs)]

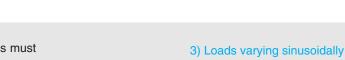
| Operating           | Operating Load conditions                                |           |
|---------------------|----------------------------------------------------------|-----------|
| Normally stationary | Impact load or machine<br>deflection is small            | 1.0 ~ 1.3 |
| Normally stationary | Impact or twisting load is applied                       | 2.0 ~ 3.0 |
| Normally maying     | Normal load is exerted or<br>machine deflection is small | 1.0 ~ 1.5 |
| Normally moving     | Impact or twisting load is applied                       | 2.5 ~ 7.0 |

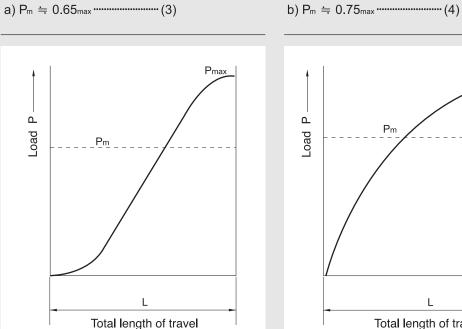
#### **Technical Data**


#### 3-2. Calculating the Equivalent Load

Linear Rail Systems can accept normal and moment (Mro, Mpo, Myo) loads in all directions including radial, reverse-radial and lateral loads at the same time. Therefore, calculate the equivalent load accordingly.

 $P_{E} (Equivalent \ load) = P_{n} + P_{nT}$   $P_{n} : Vertical \ load$   $P_{nT} : Horizontal \ load$ 


| Pn  | Radial load         | Mro | Moment in rolling direction  |
|-----|---------------------|-----|------------------------------|
| PL  | Reverse-radial load | Мро | Moment in pitching direction |
| PnT | Laterall load       | Муо | Moment in yawing direction   |








#### **Technical Data**

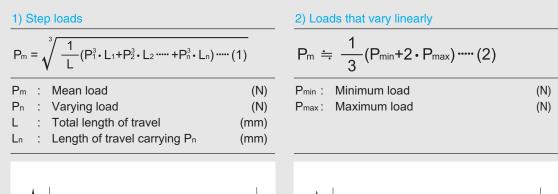


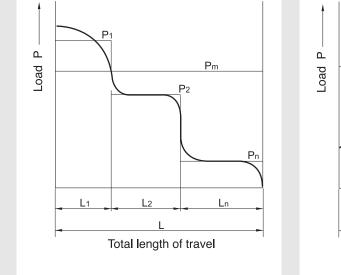


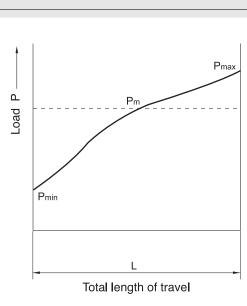
# Pmax Pm L. Total length of travel

**Linear Rail System** 

## Linear Rail System


#### **Technical Data**


#### 3-4. Calculating the Mean Load


Loads acting on a linear rail system can vary according to various conditions. All load conditions must be taken into consideration in order to calculate the required linear rail system capacity

#### [Equation for calculating the mean load]

- Pm: Mean load (N) Pn: Varying load (N) (mm) L : Total length of travel Ln : Length of travel carrying Pn (mm)
- $P_{m} = \sqrt[3]{\frac{1}{L} \cdot \sum_{m=1}^{n} (P_{n}^{3} \cdot L_{n})}$







#### a / 19

### **Technical Data**

### 3-5. Life Calculation

Linear Rail System

The equation of nominal life for linear rail system is shown as below.

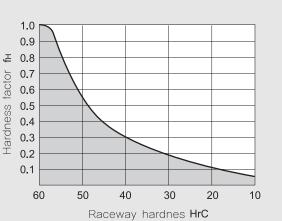
#### [Calculation of nominal life]

**Technical Data** 

$$L = \left(\frac{f_{H} \cdot f_{T} \cdot f_{C}}{f_{W}} \cdot \frac{C}{P_{C}}\right)^{3} X 50$$

• C (N) : Basic dynamic load rating • fH : Hardness factor

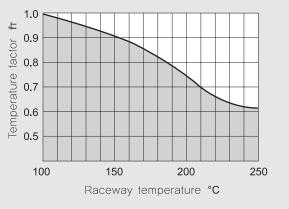
• L (km) : Nominal life


Pc(N) : Calculated load

- fT : Temperature factor
- fc : Contact factor
- fw : Load factor

#### Hardness factor (fH)

To optimize the load capacity of a linear rail system, the hardness of the rail should be HRC 58~62.


The value for linear rail system is normally 1.0 since the linear rail system has sufficient hardness.



#### Temperature factor (ft)

If the temperature of the linear rail system is over 100°C, The hardness of the block and rail will be reduced, and as the result, the temperature factor, ft should be taken into Account.

- \* The value for linear rail system is normally 1.0 when operation temperature is under 80°C.
- \* Please contact us if you need linear rail system with over 80°C working condition.



#### Contact factor (fc)

When two or more blocks are used in close contact, it is hard to obtain a uniform load distribution because of mounting errors and tolerances. The basic dynamic load C should be multiplied by the contact factors fc shown here.

| Number of blocks in<br>close contact | Contact factor fc |
|--------------------------------------|-------------------|
| 2                                    | 0.81              |
| 3                                    | 0.72              |
| 4                                    | 0.66              |
| 5                                    | 0.61              |
| 6 or more                            | 0.6               |
| Normal condtion                      | 1.0               |
|                                      |                   |

#### Load factor (fw)

Reciprocating machines create vibrations. The effects of vibrations are difficult to calculate precisely. Refer to the following table to compensate for these vibrations.

| Vibration and<br>Impact | Velocity (V)                                                                                                           | Load<br>factor fw |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------|
| Very slight             | Very low<br>V ≦0.25m/s                                                                                                 | 1 ~ 1.2           |
| Slight                  | $\begin{array}{c} \text{Low} \\ \text{0.25} <\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 1.2 ~ 1.5         |
| Moderate                | $\begin{array}{c} \text{Medium} \\ \text{1.0} < V \leq 2.0 \text{m/s} \end{array}$                                     | 1.5 ~ 2.0         |
| Strong                  | High<br>V <2.0m/s                                                                                                      | 2.0 ~ 3.5         |

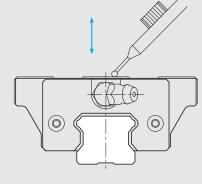
 $L_{h} = \frac{L \times 10^{6}}{2 \times \ell_{s} \times n_{1} \times 60}$ 

#### [Life calculation]

When the nominal life (L) is calculated. The life of linear rail system can be calculated by following equation, if the stroke and reciprocating cycles per minute are constant.

| • Lh (h)                  | : | Hours of nominal life           |  |
|---------------------------|---|---------------------------------|--|
| • L (km)                  | : | Nominal life                    |  |
| ●                         | : | Stroke                          |  |
| • n1 (min <sup>-1</sup> ) | : | Reciprocation cycles per minute |  |
|                           |   |                                 |  |

#### **Technical Data**


#### 4. Rigidity

#### 4-1. Radial-Clearance

The block side to side movement by vibration is called clearance.

#### Clearance checking

After mounting the linear rail system, move the block up and down then check the change of value.



#### 4-2. Preload

Preload affects the rigidity, internal-load and clearance. Also, it is very important to select appropriate preload according to applied load, impact and vibration expected in the application.


| Preload                                                                                                                        | load Conditions Example                                                                                                               |                                                                                                                                                                                                                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| K3□Where rigidity is required, vibration and<br>impact are present.[Heavy<br>preload]□Engineered machinery for heavy equipment |                                                                                                                                       | <ul> <li>Machining center</li> <li>NC lathe</li> <li>Grinding machine</li> <li>Milling machine</li> <li>Vertical axis of machine tool</li> </ul>                                                                                    |  |
| K2<br>[Light preload]                                                                                                          | <ul> <li>Where overhung loads or moment occur</li> <li>Single axis operation.</li> <li>Light load that requires precision.</li> </ul> | <ul> <li>Measuring equipment</li> <li>Electric discharge machine</li> <li>High speed material handling equipment</li> <li>NC drilling machine</li> <li>Industrial robot</li> <li>Z axis for general industrial equipment</li> </ul> |  |
| K1<br>[Normal<br>preload]                                                                                                      | <ul> <li>Where the load direction is constant, impact<br/>and vibration are light.</li> <li>Precision is not required</li> </ul>      | <ul> <li>Welding machine</li> <li>Binding machine</li> <li>Automatic wrapping machine</li> <li>Material handling equipment</li> </ul>                                                                                               |  |

### 4-3. Rigidity

When the load is applied to Linear Rail Systems, the balls, blocks and rails experience the elastic deformation within permissible range. The ratio of displacement is known as the rigidity. The rigidity increases as the preload increases.

In case of four way equal load type, the preload is available until the load increases to some 2.8 times the preload applied.





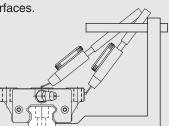
#### 5. Accuracy

Accuracy of linear rail system is generally defined by the running parallelism or the vertical and horizontal variations between the block and the rail mounting surfaces.

#### 5-1. Running parallelism

It is tolerance of parallelism between reference of block and rail when the rail is mounted and block is moving in the whole length of rail.

#### 5-2. Difference in Height


Difference in height between blocks on the same rail.

#### 5-3. Difference in width

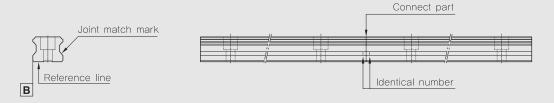
Difference in width between rail and blocks on the same rail

#### 5-4. Accuracy level

Accuracy levels are divided into three type – **N**, **H** and **P**. **See the dimension pages for each accuracy.** 

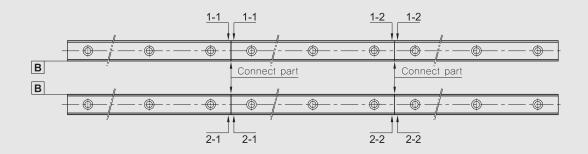


**Linear Rail System** 





# 0) Ball Scre


For extremely long travel applications it may be necessary to join the rails via a butt joint. These joint are matched for continuous smooth motion at the factory and numbered. When installing the segments insure that the numbers at the joints match. In the case of a double rail system the first of the two numbers identifies the rail.



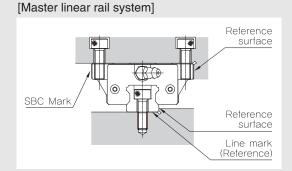
[Rail joint marking]

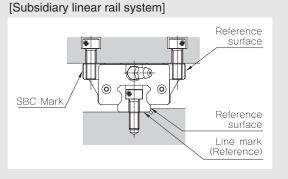




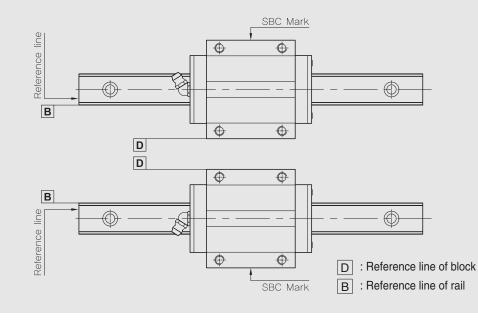


### Linear Rail System


#### **Technical Data**


#### 6. Design of system

Mounting method, tolerance of the mounting sufraces, and order in which the rails are mounted all affect the accuracy of machine,. Therefore we recommend considering below conditions.


#### 6-1. Identifying reference surface

The unmarked edge of the block and the lined edge of the rail define the reference surfaces. Please note the methods below for locating these surfaces in your design.



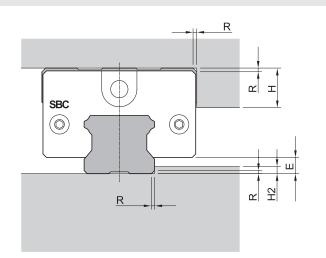


#### [Example of identifying reference line for pair usage]



#### **Technical Data**

## Linear Rail System

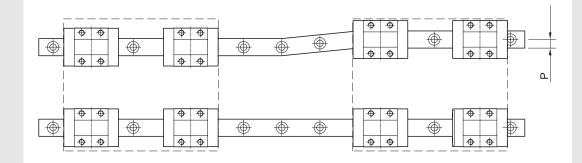

# **b**Ball Scre

### **Technical Data**

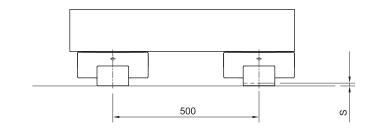
#### 6-2. Shoulder height and fillet radius R

When the bearing and rail are installed on the table and base, the fillet radius, chamfer size and shoulder height must be considered.

#### \* See the each pages for shoulder height and fillet radius R.




#### 6-3. Permissible tolerance of mounting surface


Mounting errors can cause rolling resistance to motion. Due to the self adjusting feature of the SBC linear rail system, rolling resistance or bearing will not be affected as long as the permissible tolerance is observed as per the table shown in the catalogue.

\* See the each page for permissible tolerance of mounting surface.

#### [Permissible tolerance (P) of parallelism]



[Permissible tolerance (S) of rail mounting surface height variation]

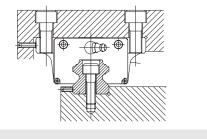


(a) / 24

#### **Technical Data**

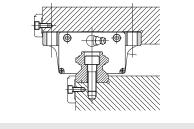
# 6-4. Mounting linear rail system

**Linear Rail System** 


**Technical Data** 

#### [Securing Method for Blocks and Rails]

Normally, both the bearing block and rail are mounted to the structure with bolts. When a horizontal load is applied, shock, or vibration, it is recommended that the rail be clamped horizontally against the reference surface.

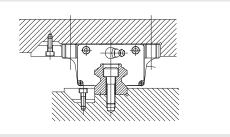

#### (1) Cap screw mounting

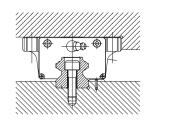
Small bolts are used when space is limited. The number of bolts can be adjusted as necessary.



#### (2) Horizontal clamp mounting

This method provides an easy solution to shock and vibration applications.

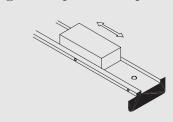




#### (3) Tapered Gib

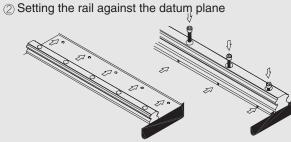
This method offers the most secure means for locating the rail and block against the reference surface.

#### (4) Dowel Pin

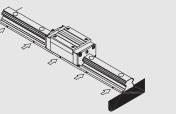
Where the forces are lower and the costs more critical, dowel pins can be used to fix the rail.

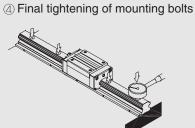






#### [Rail Mounting procedure]

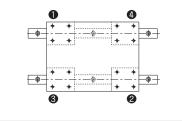
• Clean and dry the mounting surface.


- Ocat each surface with low viscosity spindle oil, then place the rail on the surface and then lightly tighten the mounting bolts temporarily.
- **③** Place the carriage plate on the blocks carefully and tighten the mounting bolts temporarily.
- Position the carriage plate by tightening the master block against the reference surface using the selected securing method and tighten the mounting bolts with a torque wrench.
   Follow the above order to mount subsidiary blocks.




(1) Checking the mounting




③ Tightening set screws





#### [Block Mounting procedure]

- Clamp the reference rail in place and tighten the mounting bolts with a torque wrench, making several passes to reach the desired torque
- Carefully position the table with bearings onto the rails and tighten the non-reference blocks with a torque wrench.
- Starting at one end ,move the table along the rail and tighten the non-reference rail slowly during several passes with a final pass using the torque wrench. Do not over tighten



#### **Technical Data**

Below bolt mounting torque is recommended for mounting the rail.

|      |        |                 | Unit : N.c |
|------|--------|-----------------|------------|
| Bolt |        | Mounting torque |            |
| Bon  | Steel  | Cast iron       | Aluminum   |
| M2   | 58.8   | 39.2            | 29.4       |
| M2.3 | 78.4   | 53.9            | 39.2       |
| M2.6 | 118    | 78.4            | 58.8       |
| M3   | 196    | 127             | 98         |
| M4   | 412    | 274             | 206        |
| M5   | 882    | 588             | 441        |
| M6   | 1370   | 921             | 686        |
| M8   | 3040   | 2010            | 1470       |
| M10  | 6760   | 4510            | 3330       |
| M12  | 11800  | 7840            | 5880       |
| M14  | 15700  | 10500           | 7840       |
| M16  | 19600  | 13100           | 9800       |
| M20  | 38200  | 25500           | 19100      |
| M22  | 51900  | 34800           | 26000      |
| M24  | 65700  | 44100           | 32800      |
| M30  | 130000 | 87200           | 65200      |

#### 7. Lubrication

Lubrication for linear rail system is a key part of its performance.

- Reduce friction and wearing for each moving part.
- Eliminate the heat on linear rail system.
- Prevent corrosion on inside and outside of linear rail system.
- Dust-prevention.

#### 7-1. Lubrication requirements for linear rail system

Form a strong oil film

- Have high thermal stability
- Low-friction

 Oil must have high-viscosity and grease must have consistency again repeated agitation of grease

Non-corrosive

• High water resistance

#### 7-2. Comparison of lubrication

A comparison of the application features for oil and grease used in linear rail system is shown in the table below.

| Item               | Grease            | Oil       |
|--------------------|-------------------|-----------|
| Rotation           | Low, intermediate | High      |
| Seal               | Simple            | Cautious  |
| Lubrication change | Complicated       | Simple    |
| Life               | Short             | Long      |
| Thermal radiation  | Bad               | Good      |
| Friction torque    | Large             | Less      |
| Performance        | Good              | Excellent |

Linear Rail System

### **Technical Data**

#### (1) How to grease

- With grease gun : The grease is fed through the grease fitting on linear rail system.
- With pump : The grease is fed periodically by automation pump.

#### (2) How to feed oil

• Oil-brushed on, sprayed or pumped.

#### 7-3. Lubricants interval

Lubricants intervals vary according to the environment and working condition of machine. Therefore, below lubricant intervals are recommended. Do not mix oil and grease systems.

| Item   | Checking time | Lubricant interval    | Working condition and outcome   |
|--------|---------------|-----------------------|---------------------------------|
| Grease | 3 ~ 6 months  | 6 months ~ 1 year     | Normal working condition        |
| Glease | 3 ~ 0 monuis  | 3000km                | 3000km/6 months                 |
| Oil    | 1 week        | According to checking | Volume and contamination of oil |
|        | Everyday      | Any time              | Volume of oil                   |

### 7-4. Class of oil

working condition.

Item

Normal working condition

Special working condition

| Lubricant | Class                                 |
|-----------|---------------------------------------|
| Oil       | Coolant oil, turbine oil ISOVG32 ~ 68 |

Lubricant for linear rail system must be selected after considering vibration, clean room, vacuum and

Application

Multipurpose industrial

application

Clean room

Vibration

Wide temperature

7-5. Classification and selection of lubrication

SBC supplies two kinds of grease as standards.

\* Contact SBC for special lubes or MSDS sheets

**Linear Rail System** 

Brand

Shell Alvania EP(LF)0

[Korea Shell]

SNG 5050

[NTG Korea]

**Technical Data** 

### **Technical Data**

| [1] General | [2] Special feature | [3] Representative fe  |
|-------------|---------------------|------------------------|
| [1] General | [2] Special feature | [3] Representative for |

- Shell Gadus S2 V220AD • Company : Korea Shell
- Appearance : Bright brown color, semi-solid in normal temperature
- Anti-corrosive
- High liquidity
- High mechanical stability

| <br>[3] Representative feature              |
|---------------------------------------------|
| • Consistency enhancer :<br>Lithium/Calcium |
| • Base oil : Mineral oil                    |
| • Working temperature :                     |
| -10°C ~ 120°C                               |

| Test item                                                  | Representative value     | Test method                 |
|------------------------------------------------------------|--------------------------|-----------------------------|
| Base oil<br>Kinematic Viscosity<br>@ 40°C cSt<br>100°C cSt | Mineral oil<br>220<br>19 | IP 71/ASTM-D445             |
| Cone Penetration<br>Confusion @ 25°C 0.1mm                 | 310~340<br>(1)           | IP 50/ASTM-D217<br>(NLGI *) |
| Dropping Point °C                                          | 180                      | IP 396                      |
| Weld Load kg                                               | 400                      | ASTM D 2596                 |

#### \* NLGI :National Lubricating Grease Institute

| Consistency test | KS        | NLGI |
|------------------|-----------|------|
| method           | 310 ~ 340 | 1    |

#### [Special working condition : Wide-temperature and low dust accumulating]

| 1] General             | [2] Special                   |
|------------------------|-------------------------------|
| Name : SNG5050         | <ul> <li>Excellent</li> </ul> |
| Company : NTG Korea    | oxidation                     |
| Appearance : Butter in | <ul> <li>Long life</li> </ul> |
| normal temperature     | <ul> <li>Low dust</li> </ul>  |

| [2] Special feature                                      |
|----------------------------------------------------------|
| <ul> <li>Excellent stability of<br/>oxidation</li> </ul> |
| <ul> <li>Long life grease</li> </ul>                     |
| I ave duct a compulation                                 |

t accumulating and excellent chemical-resistance • Wide temperature range

Do

. . . . . . .

| • Consistency : Urea       |  |
|----------------------------|--|
| • Base oil : Synthetic oil |  |

[3] Representative feature

Linear Rail System

**Technical Data** 

• Working temperature : -40°C ~ 200°C

| Test item                                                |            | Representative<br>value | Test method    |
|----------------------------------------------------------|------------|-------------------------|----------------|
| Consistency<br>[25°C, 60 times]                          |            | 3                       | NLGI *         |
| Dropping point                                           |            | 280°C                   | JIS K 2220 5.4 |
| Evaporation (22h) mass %                                 | 99°C       | 0.11%                   | JIS K 2220 5.6 |
| Evaporation (2211) mass %                                | 150°C      | 0.57%                   | JIS K 2220 5.6 |
| Oil separation rate (24h) mass %                         | 150°C      | 0.5%                    | JIS K 2220 5.7 |
| Film evaporation (24h) mass %                            | 150°C      | 5.54%                   | -              |
| Thim evaporation (241) mass 76                           | 180°C      | 16.44%                  | -              |
| Stability of oxidation [99°C, 10                         | 0h] mass % | 0.015%                  | JIS K 2220 5.8 |
| Mixing stability [100,000cycles]                         |            | Pass                    | ASTM D 1743    |
| Wear resistance<br>( 1200rpm, 392N, room temperature 1h) |            | 0.57                    | ASTM D 2266    |

#### \* NLGI : National Lubricating Grease Institute

| Consistency test<br>method | KS        | NLGI |
|----------------------------|-----------|------|
|                            | 220 ~ 250 | 3    |

**Technical Data** 

### Linear Rail System

#### **Technical Data**

#### 7-6. Grease fitting

Select the appropriate grease fitting from below options in accordance with design.

#### [Standard grease fitting]

Front grease fitting (except SBM, SBMW) for linear rail system is standard grease fitting.



(SBG, SBI front grease fitting)

(SBM, SBMW front grease fitting)

#### [Side grease fitting]

When greasing is difficult because of limited space in front of the grease nipple, the side grease fitting can be supplied. (\*Side grease fitting is not available for SBM, SBMW.)



(SBG, SBI 15~25 FL side grease fitting)



(SBG 30~35 FL side grease fitting) (SBI 30~45 FL side grease fitting)



(SBG, SBI SL side grease fitting)



(SBG 45~65 FL side grease fitting) (SBI 55~65 FL side grease fitting)

#### 8. Safety design

Dust prevention, rust prevention and re-lubrication according to working conditions of the linear rail system are necessary for required life time.

#### 8-1. Anti-rust

3 types of surface treatment are available for anti-rust and appearance.

#### [Chrome plating]

It achieves high rust resistance and wear resistance with the coating film of over 750HV.

#### [Black chrome coating]

Since black chrome coating is penetrating to rail and block, so it achieves higher corrosion resistance.

#### [Fluorocarbon chrome coationg]

Fluorocarbon chrome coating on black chrome coating is suitable when high corrosion resistance is required (water or salty water working condition).



(Black chrome coating)

#### [Caution for surface treatment]

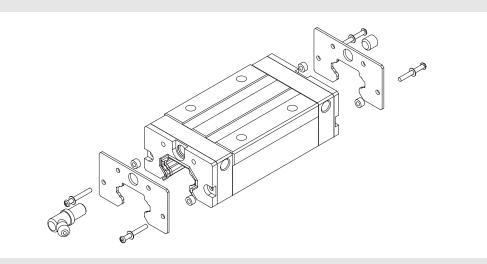
- Be aware that the rail hole may not surface treated.
- ② Set the higher safety factor in case surface treated linear rail system is selected.
- **③** Except above surface treatments, the other plating may cause performance problems.
- Ocntact SBC for other information on surface treatments.

#### **Technical Data**

# 8-2. Dust protection

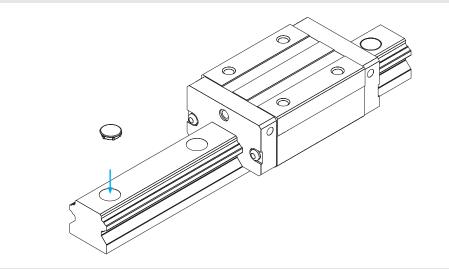
The dimensions for each seal is shown on dimension page.

Linear Rail System


**Technical Data** 

#### [Seal options]

Select the appropriate seal options according to working conditions.


| Item                          | Symbol               | Application      |
|-------------------------------|----------------------|------------------|
| End seal                      | No symbol (Standard) | Normal condition |
| End seal + end seal           | DD                   | Dust condition   |
| End seal + scraper            | ZZ                   | Welding spatter  |
| End seal + end seal + scraper | КК                   | Dust and chips   |

\* Bottom seal is not available for SBI, SBG, SBS15



#### [RC cap: rail hole cap]

Contaminants invade into the bolt holes of the rail and pollute the inside of the bearing. You can use hole caps made from hardened rubber to fill the holes. RC caps are provided with the rails.



#### $\lhd$ RC cap mounting method $\triangleright$

Bolt the rail on the plate.

Put the RC cap on the rail mounting hole and place the bigger steel plate on the cap then tap it with hammer.

Check the RC cap to make sure it is properly seated.

**Technical Data** 

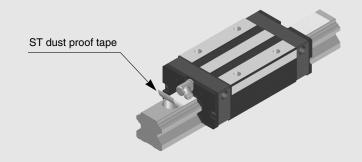
### Linear Rail System

#### **Technical Data**

### 8-3. High temperature design

#### [HT end-plate]

If working temperature is more than 80°C, SBC supply the high temperature end-plate which is made of aluminum.


• Recommended working temperature : -20 ~ 180°C

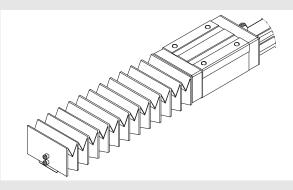


\* For high temperature applications we can replace all plastic components with steel or aluminum.

#### [ST dustproof tape]

Stainless steel ST dustproof tape greatly improves rail face sealing and works in conjunction with guide block seals. Conventional plastic plugs do not offer the same improved sealing performance.




#### $\triangleleft$ Installation of ST tape $\triangleright$

- After assembling a rail to the bed, clean the surface of the rail and remove any oil.
- 2 Attach the ST tape slowly over the rail length to within 2 or 3 mm from each end of the rail.
- S After attachment to the rail, apply pressure with dry cloth 3 or 4 times along the length of the rail to release encapsulated epoxy. Tape should be applied 4 to 6 hours prior to use to allow initial bonding.
- \* It is strongly recommended to wear safety gloves, the edge of this tape is sharp and can cut as you attach it to the rail.

#### [Bellows]

(a) / 38

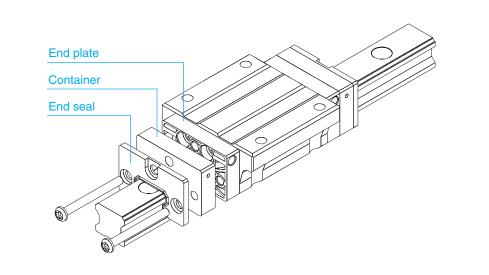
For the best protection of the linear rail system, bellows should be used.



• Reference : SBI type : SH-A SBG type : SH



### Technical Data

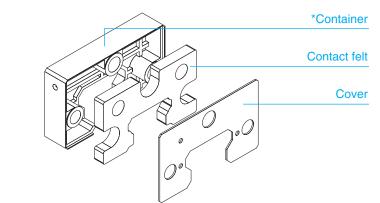

Linear Rail System

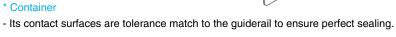
#### 8-4. High dust-proof and self-lubricant container

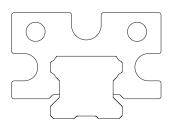
For protecting the linear rail system from fine foreign matter and where the grease feeding is not easy, SBC created the high dust-proof, (DF) seal and self-lubricant container (MF).

#### • Function and classification in accordance with seal type

DF : Dust protection for fine foreign matter MF : Self lubricating for long maintenance intervals





#### [High dust-proof seal : DF seal]

High-density felt built in DF container wipes the raceway tracking profile so it achieves higher dust protection.

An additional seal or scraper may be added for highly contaminated applications.





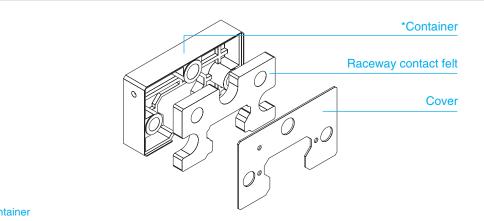


(fully contact the rail and wipe the dust)

#### **\* Caution**

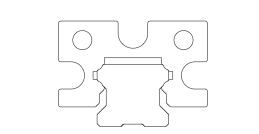
If you would like to use DF seal in watery or clean-room working condition, please contact SBC.

**Linear Rail System** 




#### [Self lubricant : MF container]

Linear Rail System

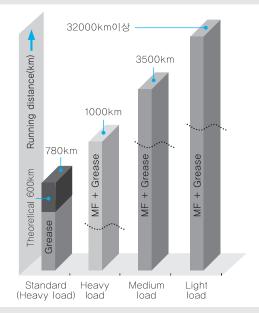

**Technical Data** 

MF (Self lubricanting) contains grease impregnated felt which feeds the grease on the raceway continuously. Each compact seal kit will guarantee total surface lubrication and long maintenance free bearing life.



#### \* Container

- Its contact surfaces are tolerance match to the guiderail to ensure perfect sealing.




(Wipe the raceway and grease is coating on the raceway)

#### 8-5. MF container Lifetime test

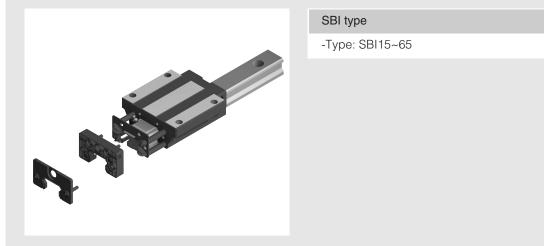
#### [Performance test] • SBG20SL-1-K1-1500-N

| Condition               | Heavy | Medium  | Light |
|-------------------------|-------|---------|-------|
| Load                    | 4.9kN | 2.5kN   | 1.0kN |
| Velocity                |       | 20m/min |       |
| Theoretical<br>Lifetime | 600km | 1500km  | -     |



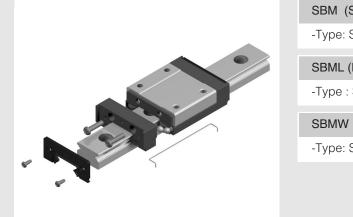
#### [Grease feeding]

The MF container may be re-charged by adding grease to hole inside of block with a syringe.


\* Caution

If MF container is required to use in special working condition like clean room, please contact SBC.

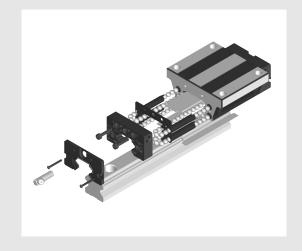
#### The Types of Linear Rail System


#### SBI high-load type

With all advantages of our SBG type, SBI improves load capacity, and increases speed capabilities for the rail system.



#### SBM miniature


Miniature linear rail system with compact size also achieve high-load.

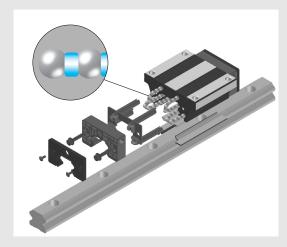


| SBM (Standard miniature)   |
|----------------------------|
| -Type: SBM09~15            |
| SBML (High-load miniature) |
| -Type : SBML09~15          |
| SBMW (Wide type miniature) |
| -Type: SBMW09~15           |
|                            |

#### SBG standard

Standard SBC linear rail system.




SBG type Type: SBG 15~65

SBS type

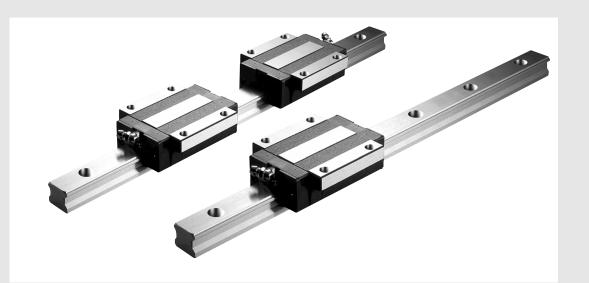
-Assembly height is lower than SBG type -Type : SBS 15~45

SPG spacer

Low noise type in which the plastic spacer are inserted in between balls.



Low noise (Spacer type) Spacer are inserted in between balls


SPG (=SBG dimensionally interchangeable) Type : SPG 20~35

SPS (=SBS dimensionally interchangeable)

-Type: SPS 20~35

The Types of Linear Rail System

### SBI High-load Linear Rail System



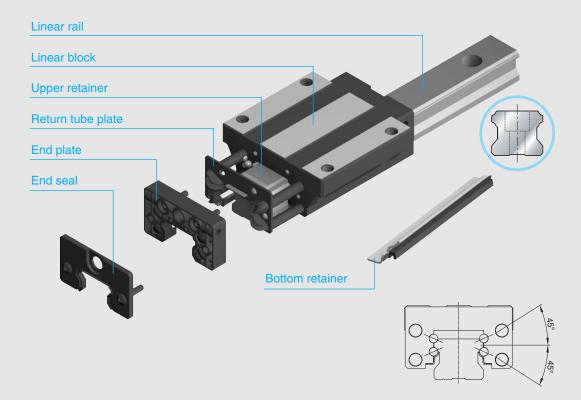
#### Circular arc groove

Two point contact structure of circular arc groove. It keeps the function of self-aligning and smooth rolling performance.

#### $45^\circ$ angle of contact

Four rows of circular arc groove contact balls at an angle of 45 degrees provides the same capacity in all directions.

#### **DF structure**


#### Low noise and High rigidity

Optimized ball recirculation structure and design provides low noise and high-rigidity.

#### The same dimension

The dimension of height, width and mounting holes are the same as SBG series, with only a slight variation in block length.

### The feature of structure



**End seal** New double lip structure which improves resistance to dust and particle contamination.

**Retainer** Ball retainer plates now snap assembled to the blocks and this unique assembly method allows an amount of internal self-alignment and load sharing while maintaining rigid ball control.

**Linear block** Highly rigid structure with a lager recirculation radius for the smooth movement and longer block length for higher load capacity.

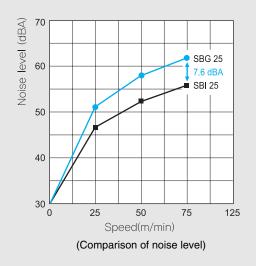
**End-plate** Manufactured with a new high rigidity engineered plastic. Designed to withstand the highest of unplanned impact loads without breaking.

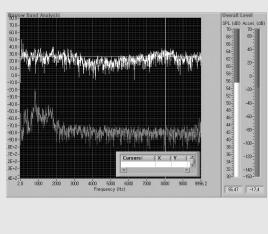
**Return tube plate** The end plate and reversing ramps of new ball return tubes are now molded as one complete body. This allows for smoother ball rotation through the critical transition points, significantly improving rolling performance, lower operating better lubricant retention inside the bearing.

**Linear rail** SBI rail is designed with a low profile and wide base. This characteristic allows greater stability in operation and during manufacture. Results in greater linear precision.

#### SBI High-load Linear Rail System

### Linear Rail System


SBI High-load Linear Rail System

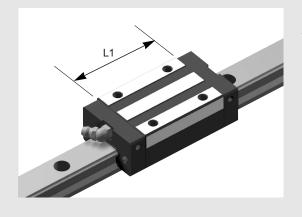

Improved geometry and tolerances increases

basic dynamic load rating

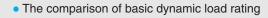
#### [Low noise]

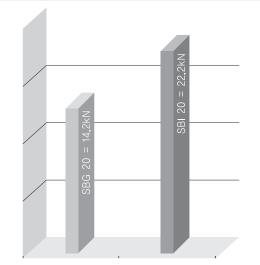
• SBI25 / SBG25 noise level test data





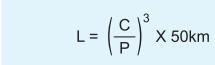

(SBI 1.3m/sec)


#### [High load performance]


SBI type is improved load capacity from the longer block length and changed radius of curvature

• The comparison of SBI / SBG block length




|           |      | (Unit : mm) |
|-----------|------|-------------|
| L1 length | SBG  | SBI         |
| 15SL      | 38.8 | 45.2        |
| 20SL      | 50.8 | 56.8        |
| 25SL      | 59.5 | 70          |

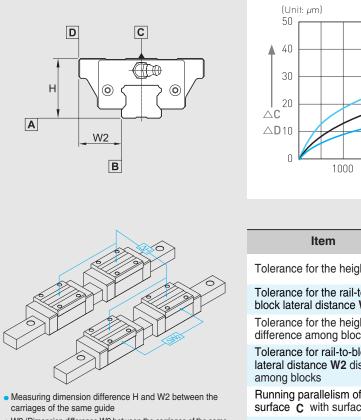


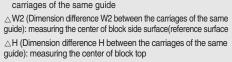


(Comparison of basic dynamic load rating)

- Comparison of lifetime calculation
- L (km) : Nominal life
- C (kN) : Basic dynamic load rating
- P (kN) : Calculated load




In case of P = 5 kN

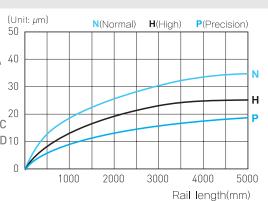

Basic dynamic load rating (C) of SBI20 SL : 22.2 kN Basic dynamic load rating (C) of SBG20 SL : 14.2 kN  $\,$ 

**SBI 20SL**: 
$$L = \left(\frac{C}{P}\right)^3 \times 50 = \left(\frac{22.2}{P}\right)^3 \times 50 = 4376 \text{ km}$$
  
**SBG 20SL**:  $L = \left(\frac{C}{P}\right)^3 \times 50 = \left(\frac{14.2}{P}\right)^3 \times 50 = 1145 \text{ km}$ 

Accuracy

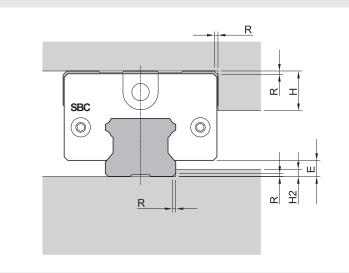
### SBI High-load Linear Rail System






#### Preload

| Reference   | Volume of preload       |
|-------------|-------------------------|
| K0 (None)   | Clearance within 0.01mm |
| K1 (Normal) | Max. 0.02C              |
| K2 (Light)  | 0.04 ~ 0.06C            |
| K3 (Heavy)  | 0.08 ~ 0.10C            |


• C(kN) : Basic dynamic load rating

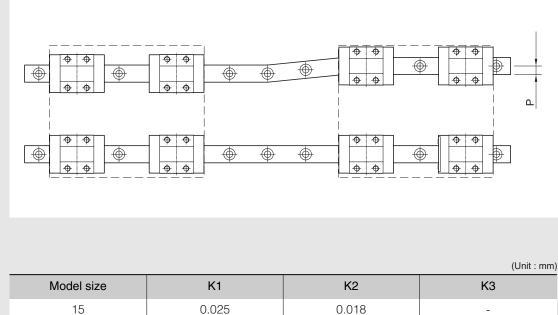
\* "K3" Preload is not available for SBI15 type



|                                                                                    |      |                 | (Unit : mm)   |
|------------------------------------------------------------------------------------|------|-----------------|---------------|
| Item                                                                               | N    | н               | Р             |
| Tolerance for the height H                                                         | ±0.1 | ±0.04           | ±0.02         |
| Tolerance for the rail-to-<br>block lateral distance <b>W2</b>                     | ±0.1 | ±0.04           | <u>+</u> 0.02 |
| Tolerance for the height <b>H</b> difference among blocks                          | 0.03 | 0.015           | 0.007         |
| Tolerance for rail-to-block<br>lateral distance <b>W2</b> distance<br>among blocks | 0.03 | 0.015           | 0.007         |
| Running parallelism of surface <b>C</b> with surface <b>A</b>                      |      | ∆C              |               |
| Running parallelism of surface <b>D</b> with surface <b>B</b>                      |      | $_{\triangle}D$ |               |
| N : Normal • H : Hig                                                               | jh   | • P : Pre       | cision        |

#### Shoulder height and fillet radius R




#### (Unit : mm) Fillet radius R Model number Shoulders height H1 Shoulders height H2 Е 7 2.5 15 0.6 3 3.5 20 0.6 8 4.6 25 10 4.5 5.5 1 30 1 11 5 7 6 7.5 35 1 13 45 1.6 16 8 9 55 1.6 20 10 12 65 1.6 25 15 19

Linear Rail System

SBI High-load Linear Rail System

### SBI High-load Linear Rail System

#### Permissible tolerance (P) of parallelism



| 15 | 0.025 | 0.018 | -     |
|----|-------|-------|-------|
| 20 | 0.025 | 0.020 | 0.018 |
| 25 | 0.030 | 0.022 | 0.020 |
| 30 | 0.040 | 0.030 | 0.027 |
| 35 | 0.050 | 0.035 | 0.030 |
| 45 | 0.060 | 0.040 | 0.035 |
| 55 | 0.070 | 0.050 | 0.045 |
| 65 | 0.080 | 0.060 | 0.055 |

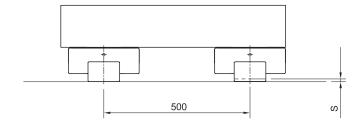


Model size

15

20

25


30

35

45

55

65



K1

0.13

0.13

0.13

0.17

0.21

0.25

0.30

0.35

K2

0.085

0.085

0.085

0.11

0.15

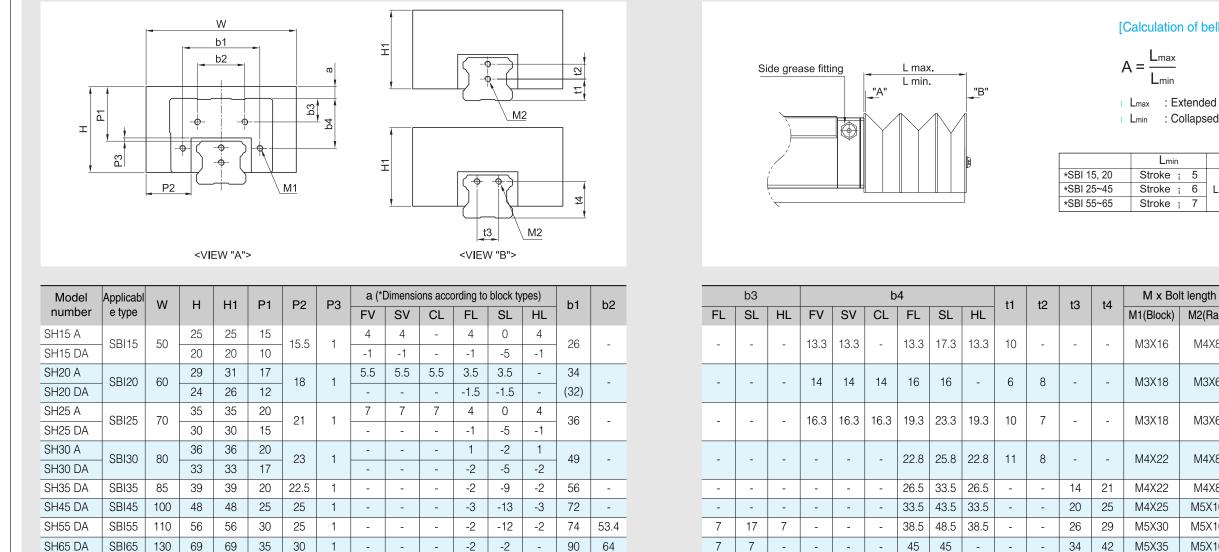
0.17

0.21

0.25

0.20

### SBI High-load Linear Rail System


# 5(611)

(a) Linear Rail System



### SBI High-load Linear Rail System

#### SH Bellows



\* The column of b1 dimension is only applying for SBI20CLS type.

\* The dimension in column "a, b3 and b4" are common for FL=FLL, SL=SLL and HL=HLL, HLS.

\* If SH bellows are applying, rail end mounting holes are necessary.

\* When you select SH bellows, please select the side grease fitting for lubrication.

\* Please contact SBC for more information.

### SBI High-load Linear Rail System

[Calculation of bellows length]



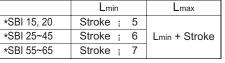
: Extended length (mm) : Collapsed length (mm)

M2(Rail)

M4X8

M3X6

M3X6


M4X8

M4X8

M5X10

M5X10

M5X10



#### (Unit : mm) Α

Extended

ratio

6

4

6

4

7

5

7

6

7

7

8

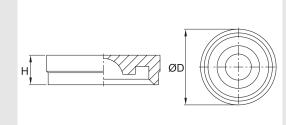
8

f Model number

Collapsed length (mm) f

; ifH' dimesion of SH-DA type is lower than SH-A type

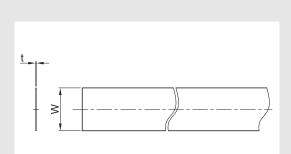
f f


Ordering example : SH25A - 70 / 420

f

f Extended length (mm)

#### SBI High-load Linear Rail System


#### **RC** Cap



|        |       | (Unit : mm) |
|--------|-------|-------------|
| Model  | D±0.1 | H±0.1       |
| RC 15  | 7.6   | 1.3         |
| RC 20  | 9.6   | 3.5         |
| RC 25  | 11.1  | 2.8         |
| *RC 30 | 14.2  | 3.7         |
| RC 45  | 20.2  | 4.7         |
| RC 55  | 23.2  | 6           |
| RC 65  | 26.2  | 6           |

RC 30 is used for SBI 30, 35 rail.SBI, SBG type use same RC cap.

#### ST Tape



|        |    | (Unit : mm) |
|--------|----|-------------|
| Model  | W  | t           |
| ST 15A | 11 | 0.1         |
| ST 20A | 15 | 0.1         |
| ST 25A | 17 | 0.1         |
| ST 30A | 21 | 0.1         |
| ST 35A | 27 | 0.1         |
| ST 45A | 37 | 0.1         |
| ST 55A | 43 | 0.1         |
| ST 65A | 51 | 0.1         |

Ordering example : <u>ST15A</u> - <u>1000L</u>

Model number

Length

#### Seal and MF container

• E : End seal

Overall

length with seal

Additional seal

Indication of seal

15V

15S

15

15L

20V

20S

20

20L

25V

25

25L

30

30L

35

35L

45

45L

55

55L

65

65L

#### [Method and overall length with each seal]

S : Scraper

Standard

Е

39.9

56.8

63.8

79.4

49.1

65.2

78.8

96.4

52.6

92

108

107.6

131.6

124.6

152.6

142

174

172.4

211.8

219.8

272.2

DD

E+E

44.5

61.4

68.4

54.1

70.2

83.8

101.4

57.6

97

113

113.6

137.6

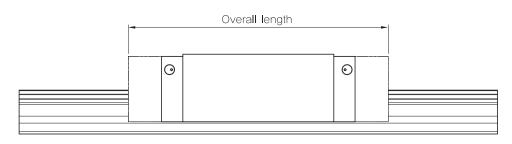
130.6

158.6

148

180

179.4


218.8

226.8

279.2

the grease to the block, please order side grease fitting type.

84



F: DF (High dust protection seal)

ΖZ

E+S

45.3

62.2

69.2

84.8

54.5

70.6

84.2

101.8

58

97.4

113.4

114

138

131

159

148.4

180.4

179.2

218.6

226.6

279

KK

E+E+S

49.9

68.8

73.8

89.4

59.5

75.6

89.2

106.8

102.4

118.4

120

144

137

165

154.4

186.4

186.2

225.6

233.6

286

63

**Linear Rail System** 

SBI High-load Linear Rail System

MF (Self lubricant)

D(M)FDD

F+E+E

58.5

75.4

82.4

68.1

97.8

115.4

71.6

111

127

129.6

153.6

146.6

174.6

164

196

197.4

236.8

244.8

297.2

98

D(M)F

F+E

53.9

70.8

77.8

93.4

63.1

92.8

110.4

66.6

106

122

123.6

147.6

140.6

168.6

158

190

190.4

229.8

237.8

290.2

(Unit : mm)

F+E+E+S

63.9

80.8

87.8

103.4

103.2

120.8

116.4

132.4

136

160

153

181

170.4

202.4

204.2

243.6

251.6

304

77

73.5

D(M)FZZ D(M)FKK

F+E+S

59.3

76.2

83.2

98.8

68.5

98.2

115.8

111.4

127.4

130

154

147

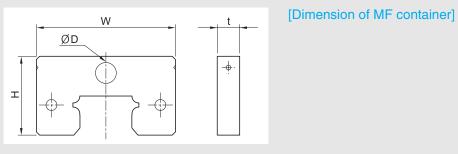
175

164.4

196.4

197.2

236.6


244.6

297

72

Bottom seal of SBI type is integrated with bottom retainer. (Except SBI15)
If block is assembled with MF container, the grease fitting is not supplied. If you would like to feed

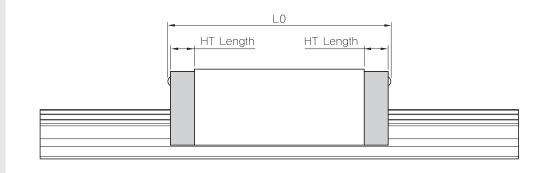
#### SBI High-load Linear Rail System



|           |       |               |                                   |      |   |      | (01  |
|-----------|-------|---------------|-----------------------------------|------|---|------|------|
| Reference | Model | Applied model | Block type                        | W    | t | Н    | D    |
|           | 15A   | SBI15         | FL/FLL/HL/HLL/HLS<br>SL/SLL/FV/SV | 33.4 | 7 | 20.2 | 4    |
|           | 20A   | SBI20         | FL/FLL<br>SL/SLL                  | 43.4 | 7 | 24.6 | 6.5  |
|           | 20B   |               | CL/CLL/FV/SV                      |      |   | 22.6 |      |
|           | 25A   | SBI25         | FL/FLL/HL/HLL<br>SL/SLL           | 47   | 7 | 29.7 | 6.5  |
|           | 25B   |               | CL/CLL/FV/SV                      |      |   | 26.7 |      |
| DF / MF   | 30A   | SBI30         | FL/FLL/HL/HLL<br>SL/SLL           | 59   | 8 | 34.2 | 6.5  |
|           | 35A   | SBI35         | FL/FLL/HL/HLL<br>SL/SLL           | 69   | 8 | 39.7 | 6.5  |
|           | 45A   | SBI45         | FL/FLL/HL/HLL<br>SL/SLL           | 85   | 8 | 49.7 | 10.5 |
|           | 55A   | SBI55         | FL/FLL/HL/HLL<br>SL/SLL           | 98   | 9 | 56   | 10.5 |
|           | 65A   | SBI65         | FL/FLL<br>SL/SLL                  | 123  | 9 | 69   | 10.5 |

#### [Seal resistance]

For the maximum value of seal resistance of SBI standard type per block, in which grease is not applied.


\* Scraper has no resistance because it is not contacting rail.

#### (Unit : N) DF MF Model End seal SBI 15 2.0 4.7 3.5 SBI 20 2.5 4.9 3.0 SBI 25 3.0 5.5 3.5 SBI 30 3.9 5.6 3.5 SBI 35 2.5 5.7 3.7 SBI 45 3.4 5.9 4.1 SBI 55 3.5 6.2 4.2 SBI 65 3.6 6.4 4.4

(Unit : mm)

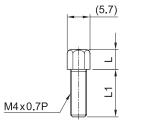
### Linear Rail System

#### HT high temperature end plate



|            |            |               |                |               |            |               |       |                                 | (Unit : mm) |
|------------|------------|---------------|----------------|---------------|------------|---------------|-------|---------------------------------|-------------|
| Reference  | HT         |               | Overall length |               |            |               |       |                                 |             |
| nelelelice | Length     | Applied model | L0             | Applied model | L0         | Applied model | L0    | Applied model                   | L0          |
| HT 15A     | 6.5        | SBI 15V       | 38.3           | SBI 15S       | 53.2       | SBI 15        | 62.2  | SBI 15L                         | 77.8        |
| HT 20A     | 8          | SBI 20V       | 47.1           | SBI 20S       | 63.2       | SBI 20        | 76.8  | SBI 20L                         | 94.4        |
| HT 25A     | 8          | SBI 25V       | 50.6           | -             | -          | SBI 25        | 90    | SBI 25L                         | 106         |
| HT 30A     | 10         | -             | -              | -             | -          | SBI 30        | 105.6 | SBI 30L                         | 129.6       |
| HT 35A     | 11         | -             | -              | -             | -          | SBI 35        | 122.6 | SBI 35L                         | 150.6       |
| HT 45A     | 13         | -             | -              | -             | -          | SBI 45        | 140   | SBI 45L                         | 172         |
| HT 55A     | 16         | -             | -              | -             | -          | SBI 55        | 168.5 | SBI 55L                         | 207.9       |
| HT 65A     | 20         | -             | -              | -             | -          | SBI 65        | 215.9 | SBI 65L                         | 268.3       |
| Ordering e | xample · S | SBI25EL -     | нт - 2 - к     | 1 - 800 - N   | <b>A</b> M | odel          |       | Preload                         |             |
| e.comig o  |            |               | 0000           |               | •          | igh temper    |       | <ul> <li>Rail length</li> </ul> | ıth         |
|            |            | -             |                |               |            | nd plate      |       | <ul> <li>Accurac</li> </ul>     | •           |
|            |            |               |                |               |            | lock quanti   |       |                                 | у           |

※ All plastic components are replace with steel or aluminum in the High Temperature Blocks.※ Side grease fitting is not available for high temperature end plates


#### Grease and nipple specification

#### [Grease]

SBI uses two types of grease according to working conditions. For details, please see the technical data for grease.

### SBI High-load Linear Rail System

(1) Standard grease fitting (Front grease fitting)



| Spec          | ification            | M4x0.               | 7P |     |
|---------------|----------------------|---------------------|----|-----|
| Applied model | Grease fitting model | Symbol              | L  | L1  |
|               | 1N                   | None                | 7  | 5.5 |
| SBI 15        | 1D                   | DD, ZZ              | 5  | 9   |
| 30115         | 1Z                   | KK                  | 5  | 11  |
|               | 1F                   | DF,DFDD, DFZZ, DFKK | 5  | 13  |
|               |                      |                     |    |     |

(Unit : mm) M6x0.75P, Asia type

L1

7

10

13

16

19

(Unit : mm)

L1

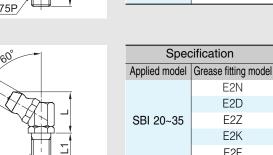
L

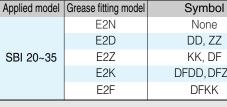
13.5

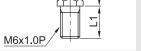
13.5

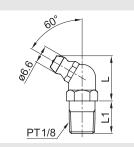
13.5

13.5


13.5


L


M6x1.0P, Europe type


(Unit : mm)











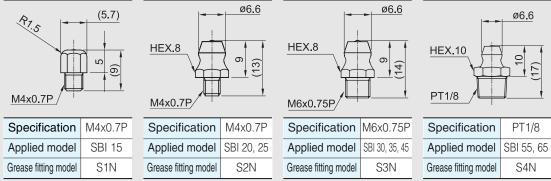
| Ы           | Grease fitting model | Symbol     | 11   |             |
|-------------|----------------------|------------|------|-------------|
| ecification |                      | PT 1/      | /8   |             |
|             |                      |            |      | (Unit : mm) |
|             |                      |            |      |             |
|             | E2F                  | DFKK       | 13.5 | 19          |
|             | E2K                  | DFDD, DFZZ | 13.5 | 16          |
| 5           | E2Z                  | KK, DF     | 13.5 | 13          |
|             | E2D                  | DD, ZZ     | 13.5 | 10          |
|             | E2N                  | None       | 13.5 | 7           |
|             |                      |            |      |             |

Symbol

None

DD, ZZ

KK, DF


DFDD, DFZZ

DFKK

| Spec          | cification           | PT 1/8               |    |    |  |  |  |
|---------------|----------------------|----------------------|----|----|--|--|--|
| Applied model | Grease fitting model | Symbol               | L  | L1 |  |  |  |
|               | 4N                   | None, DD, ZZ         | 17 | 12 |  |  |  |
| SBI 45~65     | 4D                   | KK                   | 17 | 16 |  |  |  |
|               | 4F                   | DF, DFDD, DFZZ, DFKK | 17 | 23 |  |  |  |

# **Linear Rail System**

(2) Side grease fitting



#### (3) FS nipple connector for side grease fitting (FL. FLL flange type only) \*Please see the page 3/36 for assembling the nipple connector.

M4x0.7P

Grease fitting model

| M4x0.7P Ø6    | ;<br>-             |
|---------------|--------------------|
| 4.5           | <b>a</b> n <u></u> |
|               | (12)               |
| M4x0.7P       | ¥Y                 |
| Specification | M4x0.7P            |
| Applied model | SBI 15             |
|               |                    |

| M4x0.7P       | (12)       |
|---------------|------------|
| Specification | M4x0.7P    |
| Applied model | SBI 20, 25 |

12

S2C

5

PT1/8

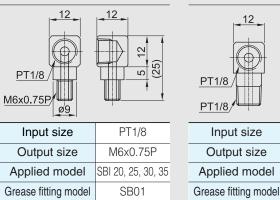
PT1/8

SBI 45, 55, 65

SB21

| Ø  | 8       | <u>M6x0.7</u> |
|----|---------|---------------|
|    | (12)    | M6x0.7        |
| on | M4x0.7P | Spec          |
|    |         |               |

| <u>I</u> | M6x0.75P      |    |
|----------|---------------|----|
| >        | Specification | Μ  |
| 25       | Applied model | SB |


\* For size 30~45, two pieces of FS

13)

S4C

#### (4) Copper pipe

Grease fitting model



S1C

|   | M6x0.75P      | (13            |
|---|---------------|----------------|
|   |               |                |
|   | Specification | M6x0.75P       |
| _ | Applied model | SBI 30, 35, 45 |

Grease fitting model

nipple connector are applied.

#### SBI High-load Linear Rail System

Ordering example

| <u>SBI20</u> | <u>FL</u> | – <u>N</u> | <u> </u> | <u> </u> | – <u>K1</u> |
|--------------|-----------|------------|----------|----------|-------------|
| [1]          | [2]       | [3]        | [4]      | [5]      | [6]         |

[1] Model

[2] Block type : FL, FLL, FV, SL. SLL, SV, HL, HLS, HLL, CL, CLS, CLL
[3] Position of grease fitting : None (front), N (side)
[4] Container : No symbol (standard), DF (high dust protection), MF (self lubricant)
[5] Seal : No symbol (standard), DD, ZZ, KK
[6] Preload : K0, K1, K2, K3

"K3" Preload is not available for SBI 15 type

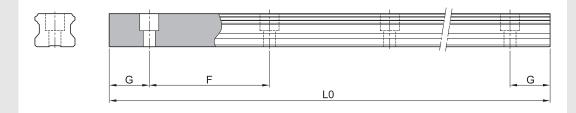
#### [Ordering example for rail]

 $\frac{\text{SBI20}}{[1]} - \frac{1000L}{[2]} - \frac{B}{[3]}$ 

[1] Model[2] Rail length[3] Bottom mounting : No symbol (standard), B (bottom mounting rail)

\* If only rail is ordered, N grade is available.

#### [Ordering for assembled rail and block]


| <u>SBI20</u>  |                        |            |                        |            |          |             |            |          |          |      |      |
|---------------|------------------------|------------|------------------------|------------|----------|-------------|------------|----------|----------|------|------|
| [1]           | [2]                    | [3]        | [4]                    | [5]        | [6]      | [7]         | [8]        | [9]      | [10]     | [11] | [12] |
|               |                        |            |                        |            |          |             |            |          |          |      |      |
| [1] Model     |                        |            |                        |            |          |             |            |          |          |      |      |
| [2] Block ty  | /pe:FL                 | , FLL, F   | V, SL.S                | LL, SV,    | HL, HL   | .S, HLL, (  | CL, CLS, ( | CLL      |          |      |      |
| [3] Positior  | ר of grea              | se fitting | g : None               | (front), I | N (side) |             |            |          |          |      |      |
| [4] Contair   | ner : No s             | symbol     | (standard              | ), DF (h   | nigh dus | st protecti | on), MF (s | self lub | oricant) |      |      |
| [5] Seal : N  | √o symbo               | ol (stano  | dard), DD              | , ZZ, Kł   | K        |             |            |          |          |      |      |
| [6] Block q   | uantity o              | on rail    |                        |            |          |             |            |          |          |      |      |
| [7] Preload   | 1 : K0, K <sup>-</sup> | 1, K2 ,K   | 3                      |            |          |             |            |          |          |      |      |
| [8] Rail len  | gth                    |            |                        |            |          |             |            |          |          |      |      |
| [9] Accura    | cy : N, H              | , P        |                        |            |          |             |            |          |          |      |      |
| [10] Surfac   | e treatm               | nent       |                        |            |          |             |            |          |          |      |      |
| [11] (B) Bo   | ttom mo                | unting r   | ail : No s             | ymbol (    | standar  | d)          |            |          |          |      |      |
| [12] Rail : I | number                 | of rails p | per axis, <sup>-</sup> | =I, 2=II   | I 4=IV   | etc.        |            |          |          |      |      |
|               |                        |            |                        |            |          |             |            |          |          |      |      |
|               |                        |            |                        |            |          |             |            |          |          |      |      |

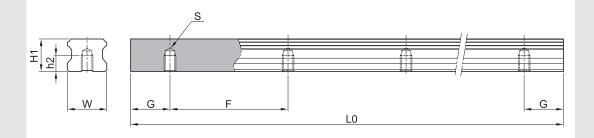
- $\ensuremath{\mathbbmu}$  We recommend block and rail assembled to be ordered where high-precision and high-rigidity are required.
- $\, \, \times \,$  For surface treatment, please mark according to each surface treatment symbol.
- \* Please contact SBC for high temperature order.
- \* "K3" Preload is not available for SBI 15 type

**Linear Rail System** 

### SBI High-load Linear Rail System

#### Standard and Max. Length of SBI rail




|                    |       |       |       |       |       |       |       | (Unit : mm) |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------------|
| Model number       | SBI15 | SBI20 | SBI25 | SBI30 | SBI35 | SBI45 | SBI55 | SBI65       |
|                    | 160   | 220   | 220   | 280   | 280   | 570   | 780   | 1270        |
|                    | 220   | 280   | 280   | 440   | 440   | 885   | 900   | 1570        |
|                    | 280   | 240   | 340   | 600   | 600   | 1095  | 1020  | 2020        |
|                    | 340   | 460   | 460   | 760   | 760   | 1200  | 1140  | 2470        |
|                    | 460   | 640   | 640   | 1000  | 1000  | 1410  | 1260  | 2620        |
|                    | 640   | 820   | 820   | 1240  | 1240  | 1620  | 1380  | 2920        |
|                    | 820   | 1000  | 1000  | 1480  | 1480  | 1830  | 1500  | 3070        |
|                    | 1000  | 1240  | 1240  | 1640  | 1640  | 2040  | 1620  | -           |
| Standard<br>length | 1240  | 1480  | 1480  | 1800  | 1800  | 2250  | 1740  | -           |
| longin             | 1480  | 1600  | 1600  | 2040  | 2040  | 2460  | 1860  | -           |
|                    | 1600  | 1840  | 1840  | 2200  | 2200  | 2985  | 1980  | -           |
|                    | 1960  | 2080  | 2080  | 2520  | 2520  | 3510  | 2220  | -           |
|                    | 2200  | 2200  | 2200  | 2840  | 2840  | -     | 2580  | -           |
|                    | 2500  | 2500  | 2500  | 3000  | 3000  | -     | 2940  | -           |
|                    | 2860  | 2960  | 2980  | 3480  | 3480  | -     | 3540  | -           |
|                    | -     | 3520  | 3520  | -     | -     | -     | -     | -           |
|                    | -     | 4000  | 4000  | -     | -     | -     | -     | -           |
| F                  | 60    | 60    | 60    | 80    | 80    | 105   | 120   | 150         |
| G                  | 20    | 20    | 20    | 20    | 20    | 22.5  | 30    | 35          |
| L0(Max length)     | 3,000 | 4,000 | 4,000 | 4,000 | 4,000 | 4,000 | 4,000 | 4,000       |

 $^{\ast}$  If the maximum length exceeds this size, butt joints can be supplied.

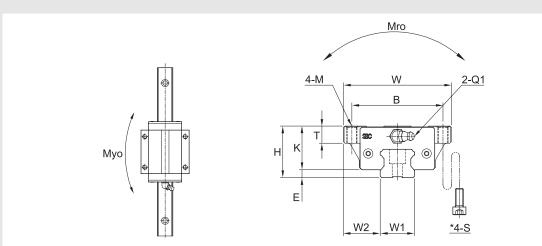
\* For more information about butt jointing, please refer to the page of safety design.

 $^{\ast}$  If the G is not standard, please indicate it in the order sheet.

| Bottom mounting | rail (SBI-B | type) |
|-----------------|-------------|-------|
|                 |             |       |



|                 | (Unit |      |        |    |      |     |                    |                  |  |
|-----------------|-------|------|--------|----|------|-----|--------------------|------------------|--|
| Model<br>number | W1    | H1   | S      | h2 | G    | F   | L0<br>(Max length) | Weight<br>(kg/m) |  |
| SBI 15-B        | 15    | 13   | M5X0.8 | 8  | 20   | 60  | 3,000              | 1.39             |  |
| SBI 20-B        | 20    | 16.5 | M6     | 9  | 20   | 60  | 4,000              | 2.37             |  |
| SBI 25-B        | 23    | 20   | M6     | 9  | 20   | 60  | 4,000              | 3.26             |  |
| SBI 30-B        | 28    | 23   | M8     | 12 | 20   | 80  | 4,000              | 4.63             |  |
| SBI 35-B        | 34    | 26   | M8     | 12 | 20   | 80  | 4,000              | 6.45             |  |
| SBI 45-B        | 45    | 32   | M12    | 18 | 22.5 | 105 | 4,000              | 10.49            |  |


\* If the maximum length exceeds this size, please contact SBC.

Linear Rail System

SBI High-load Linear Rail System

### SBI High-load Linear Rail System

#### SBI-FL/FLS/FLL



|           | Mounting dimension |     |       |     | Block dimensions  |     |     |     |       |       |      |                |      |     |     |         |      |
|-----------|--------------------|-----|-------|-----|-------------------|-----|-----|-----|-------|-------|------|----------------|------|-----|-----|---------|------|
| Model     | нw                 | ۱۸/ |       | E   | Mounting tap hole |     |     |     | L1    | T±1   | к    | Grease fitting |      |     |     |         |      |
|           |                    | vv  |       |     | В                 | J   | М   | *S  |       | 1 - 1 |      | T1             | N1   | T2  | N2  | Q1      | *Q2  |
| SBI15 FLS | 24                 | 47  | 56.8  | 3   | 38                | 30  | M5  | M4  | 38.2  | 11    | 21   | 4.5            | 5.5  | 3.8 | 3.8 | M4x0.7  | Ø3.5 |
| SBI15 FL  | 24                 | 47  | 63.8  | 3   | 38                | 30  | M5  | M4  | 45.2  | 9     | 21   | 4.5            | 5.5  | 3.8 | 3.8 | M4x0.7  | Ø3.5 |
| SBI15 FLL | 24                 | 47  | 79.4  | 3   | 38                | 30  | M5  | M4  | 60.8  | 9     | 21   | 4.5            | 5.5  | 3.8 | 3.8 | M4x0.7  | Ø3.5 |
| SBI20 FL  | 30                 | 63  | 78.8  | 4.6 | 53                | 40  | M6  | M5  | 56.8  | 12    | 25.4 | 6              | 12   | 5.8 | 5   | M6x0.75 | Ø3.5 |
| SBI20 FLL | 30                 | 63  | 96.4  | 4.6 | 53                | 40  | M6  | M5  | 74.4  | 12    | 25.4 | 6              | 12   | 5.8 | 5   | M6x0.75 | Ø3.5 |
| SBI25 FL  | 36                 | 70  | 92    | 5.5 | 57                | 45  | M8  | M6  | 70    | 13    | 30.5 | 6              | 12   | 5   | 5   | M6x0.75 | Ø3.5 |
| SBI25 FLL | 36                 | 70  | 108   | 5.5 | 57                | 45  | M8  | M6  | 86    | 13    | 30.5 | 6              | 12   | 5   | 5   | M6x0.75 | Ø3.5 |
| SBI30 FL  | 42                 | 90  | 107.6 | 7   | 72                | 52  | M10 | M8  | 79.6  | 15.5  | 35   | 8.5            | 12   | 7.8 | 5   | M6x0.75 | Ø5.7 |
| SBI30 FLL | 42                 | 90  | 131.6 | 7   | 72                | 52  | M10 | M8  | 103.6 | 15.5  | 35   | 8.5            | 12   | 7.8 | 5   | M6x0.75 | Ø5.7 |
| SBI35 FL  | 48                 | 100 | 124.6 | 7.5 | 82                | 62  | M10 | M8  | 94.6  | 15    | 40.5 | 8              | 12   | 8   | 6   | M6x0.75 | Ø5.7 |
| SBI35 FLL | 48                 | 100 | 152.6 | 7.5 | 82                | 62  | M10 | M8  | 122.6 | 15    | 40.5 | 8              | 12   | 8   | 6   | M6x0.75 | Ø5.7 |
| SBI45 FL  | 60                 | 120 | 142   | 9   | 100               | 80  | M12 | M10 | 108   | 18    | 51   | 10.5           | 13.5 | 9.3 | 6.5 | PT1/8   | Ø5.7 |
| SBI45 FLL | 60                 | 120 | 174   | 9   | 100               | 80  | M12 | M10 | 140   | 18    | 51   | 10.5           | 13.5 | 9.3 | 6.5 | PT1/8   | Ø5.7 |
| SBI55 FL  | 70                 | 140 | 172.4 | 12  | 116               | 95  | M14 | M12 | 131   | 22    | 58   | 12             | 13   | 12  | 8   | PT1/8   | Ø8.7 |
| SBI55 FLL | 70                 | 140 | 211.8 | 12  | 116               | 95  | M14 | M12 | 170.4 | 22    | 58   | 12             | 13   | 12  | 8   | PT1/8   | Ø8.7 |
| SBI65 FL  | 90                 | 170 | 219.8 | 19  | 142               | 110 | M16 | M14 | 170.4 | 26    | 71   | 14             | 13   | 14  | 10  | PT1/8   | Ø8.7 |
| SBI65 FLL | 90                 | 170 | 272.2 | 19  | 142               | 110 | M16 | M14 | 222.8 | 26    | 71   | 14             | 13   | 14  | 10  | PT1/8   | Ø8.7 |

C (Basic dynamic load rating), Co (Basic static load rating)

\*S: Bolt size for bottom mounting type of block.

## Linear Rail System

SBI High-load Linear Rail System

Permissible static

moment

[kN • m]

0.08

0.17

0.29

0.33

0.56

0.56

0.84

0.77

1.30

1.28

2.12

1.90

3.14

2.97

4.78

5.57

9.86

Mpo Myo

0.08

0.17

0.29

0.33

0.56

0.56

0.84

0.77

1.30

1.28

2.12

1.90

3.14

2.97

4.78

5.57

9.86

(Unit : mm)

Rail

[kg/m]

1.3

1.3

1.3

2.2

2.2

3

3

4.25

4.25

6.02

6.02

9.77

9.77

13.72

13.72

23.17

Mass

Block

[kg]

0.20

0.24

0.30

0.46

0.60

0.75

0.80

1.25

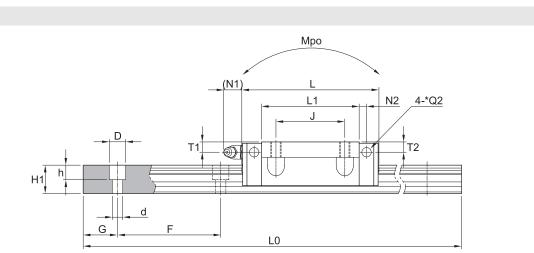
1.65

1.92

2.43

3.25

4.40


5.08

6.58

10.17

13.29 23.17

#### S\*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.



Max

length

of rail

L0

3000

3000

3000

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

G

20

20

20

20

20

20

20

20

20

20

20

22.5

22.5

30

30

35

35

Basic load

rating

[kN]

Co

18.3

24.1

31.7

38.2

50

52.1

64.4

65.4

84.7

89.1

115.3

116.3

150.5

181.8

224.5

261.7

354.1

Mro

0.13

0.16

0.21

0.36

0.47

0.56

0.69

0.85

1.10

1.42

1.83

2.48

3.21

4.81

5.95

8.24

11.15

С

12.3

14.1

17.1

22.2

27.9

31.5

36.7

42.8

51.3

59.5

71.3

79.2

94.8

127.3

147.9

188.3

232.5

Rail dimension

d

4.5

4.5

4.5

6

6

7

7

9

9

9

9

14

14

16

16

18

18

W1

15

15

15

20

20

23

23

28

28

34

34

45

45

53

53

63

63

W2

16

16

16

21.5

21.5

23.5

23.5

31

31

33

33

37.5

37.5

43.5

43.5

53.5

53.5

H1

13

13

13

16.5

16.5

20

20

23

23

26

26

32

32

38

38

53

53

F

60

60

60

60

60

60

60

80

80

80

80

105

105

120

120

150

150

Bolt hole

D

7.5

7.5

7.5

9.5

9.5

11

11

14

14

14

14

20

20

23

23

26

26

h

5.5

5.5

5.5

8.5

8.5

9

9

12

12

12

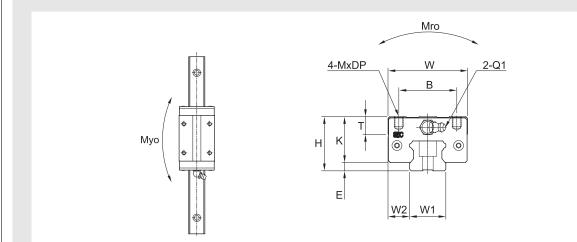
12

17

17

20

20


22

22

| <br> | <br> |  |
|------|------|--|
|      |      |  |

#### SBI High-load Linear Rail System

#### SBI-SL/SLL



|           | Mounting dimension |     |       |     | Block dimensions  |     |     |    |       |       |      |                |      |      |     |         |      |
|-----------|--------------------|-----|-------|-----|-------------------|-----|-----|----|-------|-------|------|----------------|------|------|-----|---------|------|
| Model     |                    | нw  | L     | E   | Mounting tap hole |     |     |    | L1    | T±1   | к    | Grease fitting |      |      |     |         |      |
|           | 11                 |     |       |     | В                 | J   | М   | DP |       | 1-2-1 |      | T1             | N1   | T2   | N2  | Q1      | *Q2  |
| SBI15 SL  | 28                 | 34  | 63.8  | 3   | 26                | 26  | M4  | 5  | 45.2  | 10    | 25   | 8.5            | 5.5  | 7.8  | 3.8 | M4x0.7  | Ø3.5 |
| SBI15 SLL | 28                 | 34  | 79.4  | 3   | 26                | 34  | M4  | 5  | 60.8  | 10    | 25   | 8.5            | 5.5  | 7.8  | 3.8 | M4x0.7  | Ø3.5 |
| SBI20 SL  | 30                 | 44  | 78.8  | 4.6 | 32                | 36  | M5  | 5  | 56.8  | 10    | 25.4 | 6              | 12   | 5.8  | 5   | M6x0.75 | Ø3.5 |
| SBI20 SLL | 30                 | 44  | 96.4  | 4.6 | 32                | 50  | M5  | 5  | 74.4  | 10    | 25.4 | 6              | 12   | 5.8  | 5   | M6x0.75 | Ø3.5 |
| SBI25 SL  | 40                 | 48  | 92    | 5.5 | 35                | 35  | M6  | 8  | 70    | 16    | 34.5 | 10             | 12   | 9    | 5   | M6x0.75 | Ø3.5 |
| SBI25 SLL | 40                 | 48  | 108   | 5.5 | 35                | 50  | M6  | 8  | 86    | 16    | 34.5 | 10             | 12   | 9    | 5   | M6x0.75 | Ø3.5 |
| SBI30 SL  | 45                 | 60  | 107.6 | 7   | 40                | 40  | M8  | 10 | 79.6  | 12    | 38   | 11.5           | 12   | 10.8 | 5   | M6x0.75 | Ø5.7 |
| SBI30 SLL | 45                 | 60  | 131.6 | 7   | 40                | 60  | M8  | 10 | 103.6 | 12    | 38   | 11.5           | 12   | 10.8 | 5   | M6x0.75 | Ø5.7 |
| SBI35 SL  | 55                 | 70  | 124.6 | 7.5 | 50                | 50  | M8  | 10 | 94.6  | 15    | 47.5 | 15             | 12   | 15   | 6   | M6x0.75 | Ø5.7 |
| SBI35 SLL | 55                 | 70  | 152.6 | 7.5 | 50                | 72  | M8  | 10 | 122.6 | 15    | 47.5 | 15             | 12   | 15   | 6   | M6x0.75 | Ø5.7 |
| SBI45 SL  | 70                 | 86  | 142   | 9   | 60                | 60  | M10 | 13 | 108   | 17    | 61   | 20.5           | 13.5 | 19.3 | 6.5 | PT1/8   | Ø5.7 |
| SBI45 SLL | 70                 | 86  | 174   | 9   | 60                | 80  | M10 | 13 | 140   | 17    | 61   | 20.5           | 13.5 | 19.3 | 6.5 | PT1/8   | Ø5.7 |
| SBI55 SL  | 80                 | 100 | 172.4 | 12  | 75                | 75  | M12 | 18 | 131   | 21    | 68   | 22             | 13   | 22   | 8   | PT1/8   | Ø8.7 |
| SBI55 SLL | 80                 | 100 | 211.8 | 12  | 75                | 95  | M12 | 18 | 170.4 | 21    | 68   | 22             | 13   | 22   | 8   | PT1/8   | Ø8.7 |
| SBI65 SL  | 90                 | 126 | 219.8 | 19  | 76                | 70  | M16 | 16 | 170.4 | 26    | 71   | 14             | 13   | 14   | 10  | PT1/8   | Ø8.7 |
| SBI65 SLL | 90                 | 126 | 272.2 | 19  | 76                | 120 | M16 | 16 | 222.8 | 26    | 71   | 14             | 13   | 14   | 10  | PT1/8   | Ø8.7 |

C (Basic dynamic load rating), Co (Basic static load rating)

(a) / 68

\*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.

# Linear Rail System

SBI High-load Linear Rail System

N2

4-\*Q2

Permissible static

moment

[kN • m]

0.17

0.29

0.33

0.56

0.56

0.84

0.77

1.30

1.28

2.12

1.90

3.14

2.97

4.78

5.57

9.86

Mpo Myo

0.17

0.29

0.33

0.56

0.56

0.84

0.77

1.30

1.28

2.12

1.90

3.14

2.97

4.78

5.57

9.86

T2

Мро

L1

U

Basic load

rating

[kN]

Co

24.1

31.7

38.2

50

52.1

64.4

65.4

84.7

89.1

115.3

116.3

150.5

181.8

224.5

261.7

232.5 354.1

Mro

0.16

0.21

0.36

0.47

0.56

0.69

0.85

1.10

1.42

1.83

2.48

3.21

4.81

5.95

8.24

11.15

С

14.1

17.1

22.2

27.9

31.5

36.7

42.8

51.3

59.5

71.3

79.2

94.8

127.3

147.9

188.3

(N1)

**M** 

G

20

20

20

20

20

20

20

20

20

20

22.5

22.5

30

30

35

35

╘╗╌┋╌┍┛

U

L0

Max

langth

of rail

L0

3000

3000

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

T1]

d

Rail dimension

d

4.5

4.5

6

6

7

7

9

9

9

9

14

14

16

16

18

18

F

Bolt hole

D

7.5

7.5

9.5

9.5

11

11

14

14

14

14

20

20

23

23

26

26

h

5.5

5.5

8.5

8.5

9

9

12

12

12

12

17

17

20

20

22

22

G

F

60

60

60

60

60

60

80

80

80

80

105

105

120

120

150

150

H1

W2

9.5

9.5

12

12

12.5

12.5

16

16

18

18

20.5

20.5

23.5

23.5

31.5

31.5

H1

13

13

16.5

16.5

20

20

23

23

26

26

32

32

38

38

53

53

W1

15

15

20

20

23

23

28

28

34

34

45

45

53

53

63

63

(Unit : mm)

Rail

[kg/m]

1.3

1.3

2.2

2.2

3

3

4.25

4.25

6.02

6.02

9.77

9.77

13.72

13.72

23.17

Mass

Block

[kg]

0.23

0.31

0.36

0.47

0.68

0.82

1.06

1.37

1.83

2.34

3.30

4.23

4.42

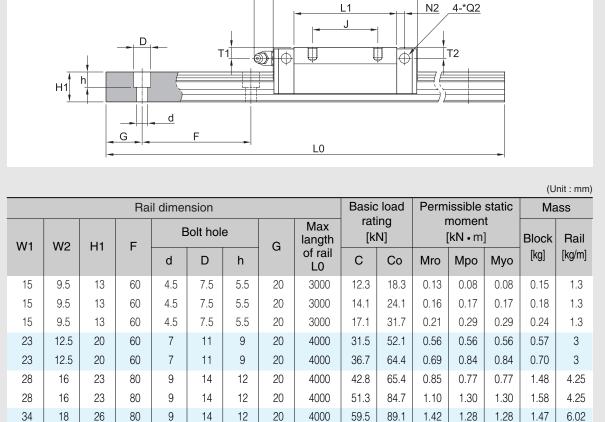
5.82

9.10

11.98 23.17

### SBI High-load Linear Rail System

### SBI-HL/HLS/HLL




|           | Mou | nting | dimer | nsion |    | Block dimensions |         |      |       |        |      |                |      |     |     |         |      |  |  |
|-----------|-----|-------|-------|-------|----|------------------|---------|------|-------|--------|------|----------------|------|-----|-----|---------|------|--|--|
| Model     | н   | w     |       | Е     | Мо | unting           | g tap h | nole | 14    | L1 T±1 | к    | Grease fitting |      |     |     |         |      |  |  |
|           | 11  | vv    |       | E     | В  | J                | М       | DP   |       | 111    | TX   | T1             | N1   | T2  | N2  | Q1      | *Q2  |  |  |
| SBI15 HLS | 24  | 34    | 56.8  | 3     | 26 | 26               | M4      | 4    | 38.2  | 6      | 21   | 4.5            | 5.5  | 3.8 | 3.8 | M4x0.7  | Ø3.5 |  |  |
| SBI15 HL  | 24  | 34    | 63.8  | 3     | 26 | 26               | M4      | 4    | 45.2  | 6      | 21   | 4.5            | 5.5  | 3.8 | 3.8 | M4x0.7  | Ø3.5 |  |  |
| SBI15 HLL | 24  | 34    | 79.4  | 3     | 26 | 34               | M4      | 4    | 60.8  | 6      | 21   | 4.5            | 5.5  | 3.8 | 3.8 | M4x0.7  | Ø3.5 |  |  |
| SBI25 HL  | 36  | 48    | 92    | 5.5   | 35 | 35               | M6      | 6    | 70    | 12     | 30.5 | 6              | 12   | 5   | 5.5 | M6x0.75 | Ø3.5 |  |  |
| SBI25 HLL | 36  | 48    | 108   | 5.5   | 35 | 50               | M6      | 6    | 86    | 12     | 30.5 | 6              | 12   | 5   | 5.5 | M6x0.75 | Ø3.5 |  |  |
| SBI30 HL  | 42  | 60    | 107.6 | 7     | 40 | 40               | M8      | 8    | 79.6  | 12     | 35   | 8.5            | 12   | 7.8 | 5   | M6x0.75 | Ø5.7 |  |  |
| SBI30 HLL | 42  | 60    | 131.6 | 7     | 40 | 60               | M8      | 8    | 103.6 | 12     | 35   | 8.5            | 12   | 7.8 | 5   | M6x0.75 | Ø5.7 |  |  |
| SBI35 HL  | 48  | 70    | 124.6 | 7.5   | 50 | 50               | M8      | 8    | 94.6  | 15     | 40.5 | 8              | 12   | 8   | 6   | M6x0.75 | Ø5.7 |  |  |
| SBI35 HLL | 48  | 70    | 152.6 | 7.5   | 50 | 72               | M8      | 8    | 122.6 | 15     | 40.5 | 8              | 12   | 8   | 6   | M6x0.75 | Ø5.7 |  |  |
| SBI45 HL  | 60  | 86    | 142   | 9     | 60 | 60               | M10     | 10   | 108   | 17     | 51   | 10.5           | 13.5 | 9.3 | 6.5 | PT1/8   | Ø5.7 |  |  |
| SBI45 HLL | 60  | 86    | 174   | 9     | 60 | 80               | M10     | 10   | 140   | 17     | 51   | 10.5           | 13.5 | 9.3 | 6.5 | PT1/8   | Ø5.7 |  |  |
| SBI55 HL  | 70  | 100   | 172.4 | 12    | 75 | 75               | M12     | 12   | 131   | 21     | 58   | 12             | 13   | 12  | 8   | PT1/8   | Ø8.7 |  |  |
| SBI55 HLL | 70  | 100   | 211.8 | 12    | 75 | 95               | M12     | 12   | 170.4 | 21     | 58   | 12             | 13   | 12  | 8   | PT1/8   | Ø8.7 |  |  |

① C (Basic dynamic load rating), Co (Basic static load rating)

\*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.

### Linear Rail System



34

45

45

53

53

18

20.5

20.5

23.5

23.5

26

32

32

38

38

80

105

105

120

120

9

14

14

16

16

14

20

20

23

23

12

17

17

20

20

20

22.5

22.5

30

30

4000

4000

4000

4000

4000

71.3

79.2

94.8

127.3

147.9

115.3

116.3

150.5

181.8

224.5

1.83

2.48

3.21

4.81

5.95

2.12

1.90

3.14

2.97

4.78

2.12

1.90

3.14

2.97

4.78

2.04

2.80

3.29

4.42

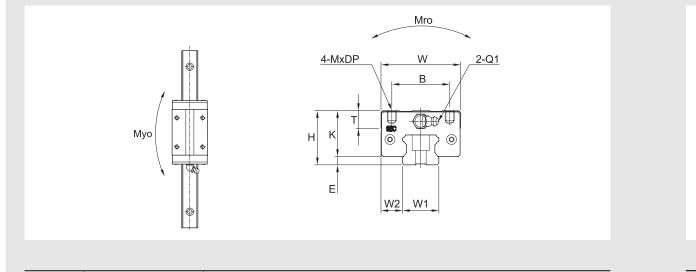
5.82

6.02

9.77

9.77

13.72


13.72

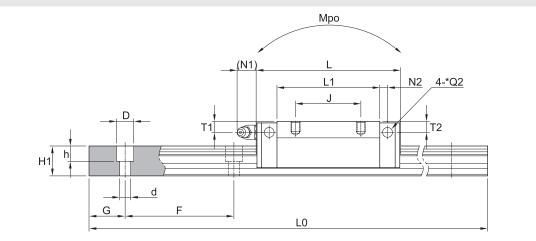
(N1)

Мро

### SBI High-load Linear Rail System

### SBI-CL/CLS/CLL



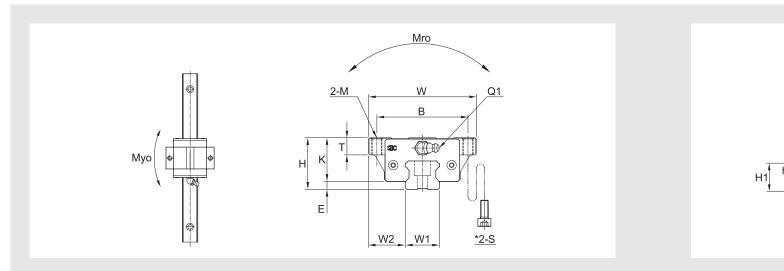

|           | Mou | nting | dimen | ision |    |        |         |     |      | Bloc  | k dim | ensio | ns |      |          |         |      |
|-----------|-----|-------|-------|-------|----|--------|---------|-----|------|-------|-------|-------|----|------|----------|---------|------|
| Model     | н   | W     | L     | Е     | Мо | unting | g tap h | ole | L1   | T±1   | к     |       |    | Grea | ise fitt | ing     |      |
|           |     |       |       | -     | В  | J      | М       | DP  |      | 1 - 1 |       | T1    | N1 | T2   | N2       | Q1      | *Q2  |
| SBI20 CLS | 28  | 42    | 65.2  | 4.6   | 32 | 32     | M5      | 5   | 43.2 | 7.8   | 23.4  | 4.8   | 12 | 4.3  | 5        | M6x0.75 | Ø3.5 |
| SBI20 CL  | 28  | 44    | 78.8  | 4.6   | 32 | 32     | M5      | 5   | 56.8 | 7.8   | 23.4  | 4.8   | 12 | 3.8  | 5        | M6x0.75 | Ø3.5 |
| SBI20 CLL | 28  | 44    | 96.4  | 4.6   | 32 | 50     | M5      | 5   | 74.4 | 7.8   | 23.4  | 4.8   | 12 | 3.8  | 5        | M6x0.75 | Ø3.5 |
| SBI25 CL  | 33  | 48    | 92    | 5.5   | 35 | 35     | M6      | 6   | 70   | 9     | 27.5  | 5.4   | 12 | 5.4  | 5        | M6x0.75 | Ø3.5 |
| SBI25 CLL | 33  | 48    | 108   | 5.5   | 35 | 50     | M6      | 6   | 86   | 9     | 27.5  | 5.4   | 12 | 5.4  | 5        | M6x0.75 | Ø3.5 |

• C (Basic dynamic load rating), Co (Basic static load rating)

\*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.

### Linear Rail System

SBI High-load Linear Rail System




|     |      |      |    |         |          |     |       |               |                |      |      |                  |      | (U    | Init : mm) |
|-----|------|------|----|---------|----------|-----|-------|---------------|----------------|------|------|------------------|------|-------|------------|
|     |      |      | Ra | il dime | nsion    |     |       |               |                | load | -    | issible          |      | Ma    | ass        |
| W1  | W2   | H1   | F  | E       | Bolt hol | е   | G Max |               | rating<br>[kN] |      |      | nomen<br>[kN • m |      | Block |            |
| ••• | ~~~  |      | I  | d       | D        | h   | u     | of rail<br>L0 | С              | Со   | Mro  | Мро              | Муо  | [kg]  | [kg/m]     |
| 20  | 11   | 16.5 | 60 | 6       | 9.5      | 8.5 | 20    | 4000          | 19.1           | 27.0 | 0.27 | 0.15             | 0.15 | 0.23  | 2.2        |
| 20  | 12   | 16.5 | 60 | 6       | 9.5      | 8.5 | 20    | 4000          | 22.2           | 38.2 | 0.36 | 0.33             | 0.33 | 0.32  | 2.2        |
| 20  | 12   | 16.5 | 60 | 6       | 9.5      | 8.5 | 20    | 4000          | 27.9           | 50   | 0.47 | 0.56             | 0.56 | 0.41  | 2.2        |
| 23  | 12.5 | 20   | 60 | 7       | 11       | 9   | 20    | 4000          | 31.5           | 52.1 | 0.56 | 0.56             | 0.56 | 0.49  | 3          |
| 23  | 12.5 | 20   | 60 | 7       | 11       | 9   | 20    | 4000          | 36.7           | 64.4 | 0.69 | 0.84             | 0.84 | 0.57  | 3          |

### SBI High-load Linear Rail System

### SBI-FV

@/74



|          | Mou | Inting | dimen | sion |      |         |        |      | E     | Block o | limens | sions |      |           |         |      |
|----------|-----|--------|-------|------|------|---------|--------|------|-------|---------|--------|-------|------|-----------|---------|------|
| Model    | н   | W      | 1     | Е    | Moun | ting ta | o hole | L1   | T±1   | к       |        |       | Grea | ise fitti | ng      |      |
|          |     | vv     | L     | L    | В    | М       | *S     |      | 1 - 1 |         | T1     | N1    | T2   | N2        | Q1      | *Q2  |
| SBI15 FV | 24  | 47     | 39.9  | 3    | 38   | M5      | M4     | 21.3 | 9     | 21      | 4.5    | 5.5   | 3.8  | 3.8       | M4x0.7  | Ø3.5 |
| SBI20 FV | 28  | 63     | 49.1  | 4.6  | 53   | M6      | M5     | 27.1 | 12    | 23.4    | 4.8    | 12    | 3.8  | 5         | M6x0.75 | Ø3.5 |
| SBI25 FV | 33  | 70     | 52.6  | 5.5  | 57   | M8      | -      | 30.6 | 13    | 27.5    | 5.4    | 12    | 5.4  | 5         | M6x0.75 | Ø3.5 |

• C (Basic dynamic load rating), Co (Basic static load rating)

**2** \*S: Bolt size for bottom mounting type of block.

S \*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves. SBI High-load Linear Rail System

N2 Q2

Permissible static

moment

[kN • m]

Mro Mpo Myo

0.03

0.10

0.17

0.03

0.10

0.17

Мро

L1

Basic load

rating

[kN]

Co

12.8

20.2

26.1

0.04

0.12

0.19

С

5.8

9.4

12.4

(N1)

 $\mathbf{M}$ 

L0

Max

langth

of rail

L0

3000

4000

4000

G

20

20

20

T1

G

F

60

60

60

W1

15

20

23

W2

16

21.5

23.5

H1

13

16.5

20

Rail dimension

d

4.5

6

7

Bolt hole

D

7.5

9.5

11

h

5.5

8.5

9

(Unit : mm)

Rail

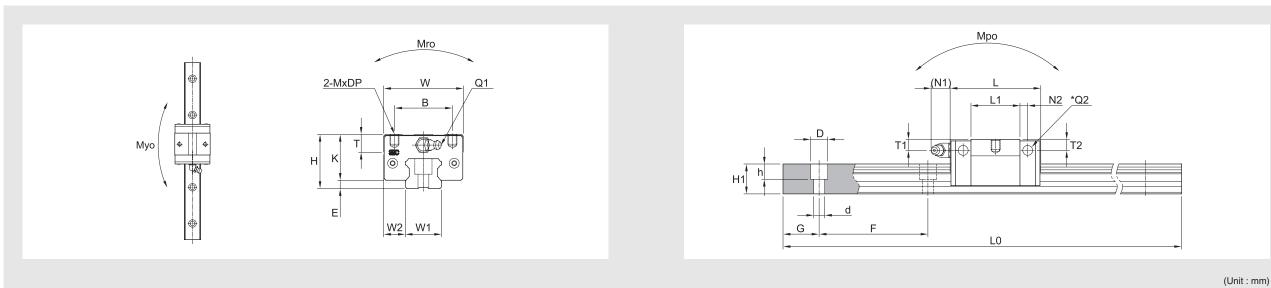
1.3

2.2

3

Mass

[kg] [kg/m]


Block

0.11

0.23

### SBI High-load Linear Rail System

### SBI-SV



W1

15

20

23

W2

9.5

12

12.5

H1

13

16.5

20

F

60

60

60

Rail dimension

d

4.5

6

7

Bolt hole

D

7.5

9.5

11

h

5.5

8.5

9

|          | Mou | Inting | dimen | sion |      |         |        |      | E   | Block c | limens | sions |      |           |         |      |
|----------|-----|--------|-------|------|------|---------|--------|------|-----|---------|--------|-------|------|-----------|---------|------|
| Model    | Н   | W      | 1     | Е    | Moun | ting ta | o hole | L1   | T±  | к       |        |       | Grea | ise fitti | ing     |      |
|          |     | vv     | L     | L    | В    | М       | DP     | L1   | 11  |         | T1     | N1    | T2   | N2        | Q1      | *Q2  |
| SBI15 SV | 24  | 34     | 39.9  | 3    | 26   | M4      | 4      | 21.3 | 6   | 21      | 4.5    | 5.5   | 3.8  | 3.8       | M4x0.7  | Ø3.5 |
| SBI20 SV | 28  | 44     | 49.1  | 4.6  | 32   | M5      | 5      | 27.1 | 7.8 | 23.4    | 4.8    | 12    | 3.8  | 5         | M6x0.75 | Ø3.5 |
| SBI25 SV | 33  | 48     | 52.6  | 5.5  | 35   | M6      | 6      | 30.6 | 9   | 27.5    | 5.4    | 12    | 5.4  | 5         | M6x0.75 | Ø3.5 |

C (Basic dynamic load rating), Co (Basic static load rating)

\*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves. Permissible static

moment

[kN • m]

Mro Mpo Myo

0.03

0.10

0.17

0.03

0.10

0.17

Mass

[kg] [kg/m]

Block

0.10

0.17

0.24

Rail

1.3

2.2

3

Basic load

rating

[kN]

Co

12.8

20.2

26.1

0.04

0.12

0.19

С

5.8

9.4

12.4

Max

langth

of rail

L0

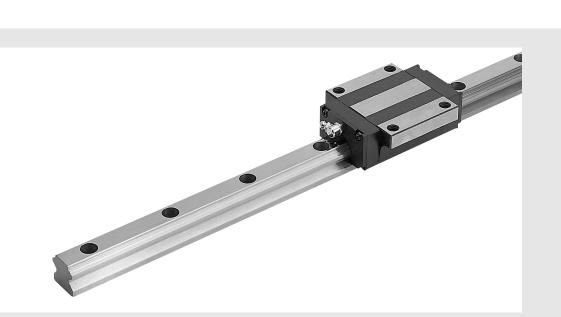
3000

4000

4000

G

20


20

20

### SBG Standard Linear Rail System



### SBG Standard Linear Rail System



### Circular arc groove

Two pint contact structure of circular arc groove. It keeps the function of self-aligning and smooth rolling performance.

### 45° angle of contact

Four rows of circular arc groove contact balls at an angle of 45 degree. It provides the same load capacity in all directions.

### DF structure

### The same dimension

Linear rail The same rail profile may be used Linear block SBG, SBS, SPG and SPS types SPS). SBC uses only high strength and heat- interchangeable. treated special steels in all rails.

The Block Structure

Linear block

Upper retainer

End plate

End seal

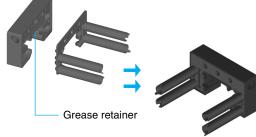
Return tube plate

for every type of block (SBG, SBS, SPG and are available. All blocks are dimensionally

Bottom retainer

End seal New double lip structure which improves resistance to dust and particle contamination.

Linear rail


### SBG Standard Linear Rail System

**Linear Rail System** 

### Single component Return tube & reversing plate structure Inserting a molded tube into the ball Return tube plate return paths keeps lubricant cleaner by providing better loose ball control and free lubricant flow while preventing metal to metal skidding contact with what is normally an imprecise return path nloaded ball wall. return tubes Ball reversing ramps % Return tube plate is available for SBG(S), SPG(S) 20~35. (Structure of return tube plate) SBS type Grease retained Retainer Ball retainers are snap assembled to the internal body and end-plate without fixed position screws. The retainers can self align according to load orientation and direct the balls smoothly into the load zone. This function eliminates ball skid and hot zone pre-load creating smoother running and longer life. These new retainers are made of stainless steel (SUS304) and are corrosion resistant. Bottom retainer is one body type with rubber seal (Snap assembled) to prevent contamination from bottom. \* Bottom seal is not available for size 15 of SBG(S), SPG(S).

### SBG Standard Linear Rail System

**Linear Rail System** 



(Close fitting end-plate reduces grease loss)



### SBG type



SBS type use same rail as SBG rail and the height is lower than SBG-SL type.

SBG is SBC standard linear block and FL, FLL,

SL. SLL are available.

SBG-FL/FLL

-Flange type

-Size 15~65

SBG-SL/SLL

-Slim type

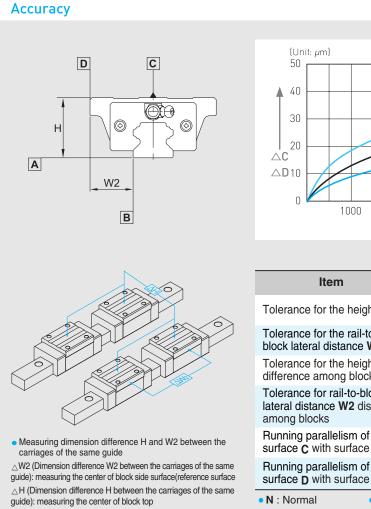
-Size 15~65

### SBS-SL/SLL

-Slim type -Size 15~45

### SBS-HL/HLL

-SBS-SL (Height is higher than SBS-SL/SLL type) -Size 25

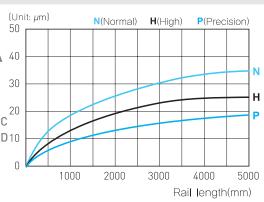

### SBS-FV

-Flange type with shorter length -Size 15~25

### SBS-SV

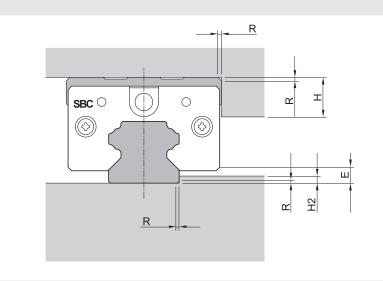
-Slim type with shorter length -Size 15~25

### SBG Standard Linear Rail System




Preload

| Reference   | Volume of preload |
|-------------|-------------------|
| K1 (Normal) | Max. 0.02C        |
| K2 (Light)  | 0.04 ~ 0.06C      |
| K3 (Heavy)  | 0.08 ~ 0.10C      |


• C(kN) : Basic dynamic load rating

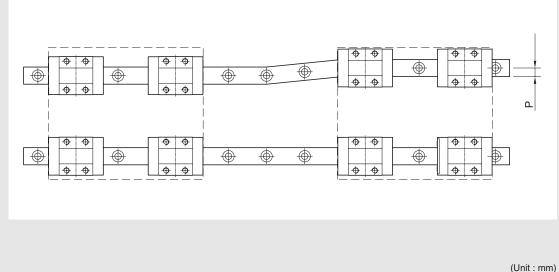
\* "K3" Preload is not available for SBG, SBS 15 type



|                                                                                    |      |                        | (Unit : mm) |
|------------------------------------------------------------------------------------|------|------------------------|-------------|
| Item                                                                               | Ν    | Н                      | Р           |
| Tolerance for the height ${\bf H}$                                                 | ±0.1 | ±0.04                  | ±0.02       |
| Tolerance for the rail-to-<br>block lateral distance <b>W2</b>                     | ±0.1 | <u>+</u> 0.04          | ±0.02       |
| Tolerance for the height <b>H</b> difference among blocks                          | 0.03 | 0.015                  | 0.007       |
| Tolerance for rail-to-block<br>lateral distance <b>W2</b> distance<br>among blocks | 0.03 | 0.015                  | 0.007       |
| Running parallelism of surface <b>C</b> with surface <b>A</b>                      |      | ∆C                     |             |
| Running parallelism of surface ${\bf D}$ with surface ${\bf B}$                    |      | ${}_{\bigtriangleup}D$ |             |
| • N : Normal • H : Hig                                                             | lh   | • P : Pre              | cision      |

### Shoulder height and fillet radius R




|              |                 |                        |                        | (Unit : mm) |
|--------------|-----------------|------------------------|------------------------|-------------|
| Model number | Fillet radius R | Shoulders height<br>H1 | Shoulders height<br>H2 | E           |
| 15           | 0.5             | 4                      | 2                      | 3           |
| 20           | 0.5             | 5                      | 2.5                    | 3.5         |
| 25           | 1.0             | 5                      | 3.5                    | 6.5         |
| 30           | 1.0             | 5                      | 4.5                    | 7           |
| 35           | 1.0             | 6                      | 6                      | 7.5         |
| 45           | 1.0             | 8                      | 8                      | 10          |
| 55           | 1.0             | 8                      | 8                      | 13          |
| 65           | 1.0             | 10                     | 10                     | 17.5        |

Linear Rail System

SBG Standard Linear Rail System

### SBG Standard Linear Rail System

### Permissible tolerance (P) of parallelism



|            |       |       | (01111 : 11111) |
|------------|-------|-------|-----------------|
| Model size | K1    | К2    | K3              |
| 15         | 0.025 | 0.018 | -               |
| 20         | 0.025 | 0.02  | 0.018           |
| 25         | 0.03  | 0.022 | 0.02            |
| 30         | 0.04  | 0.03  | 0.027           |
| 35         | 0.05  | 0.035 | 0.03            |
| 45         | 0.06  | 0.04  | 0.035           |
| 55         | 0.07  | 0.05  | 0.045           |
| 65         | 0.08  | 0.06  | 0.055           |

### Linear Rail System

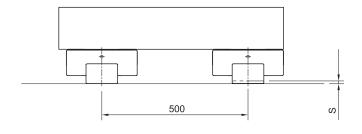
### Permissible tolerance (S) of two level offset

Model size

15

20

25


30

35

45

55

65



K2

0.085

0.085

0.085

0.11

0.15

0.17

0.21

0.25

K1

0.13

0.13

0.13

0.17

0.21

0.25

0.3

0.35

K3

-

0.05

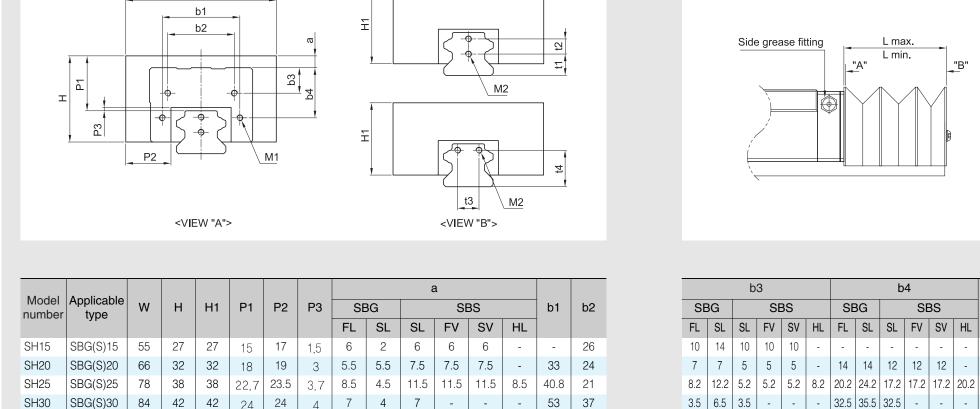
0.07

0.09

0.12

0.14

0.17


0.2

(a) Linear Rail System

### SBG Standard Linear Rail System

W

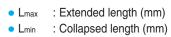
### SH Bellows



|   | Model  | Applicable         |     |      |      |      |      |     |      |       | é    | a    |      |     |      |    |
|---|--------|--------------------|-----|------|------|------|------|-----|------|-------|------|------|------|-----|------|----|
|   | number | Applicable<br>type | W   | Н    | H1   | P1   | P2   | P3  | SE   | 3G    |      | SE   | 3S   |     | b1   | b2 |
|   |        | -71                |     |      |      |      |      |     | FL   | SL    | SL   | FV   | SV   | HL  |      |    |
| 3 | SH15   | SBG(S)15           | 55  | 27   | 27   | 15   | 17   | 1.5 | 6    | 2     | 6    | 6    | 6    | -   | -    | 26 |
| 1 | SH20   | SBG(S)20           | 66  | 32   | 32   | 18   | 19   | 3   | 5.5  | 5.5   | 7.5  | 7.5  | 7.5  | -   | 33   | 24 |
| 1 | SH25   | SBG(S)25           | 78  | 38   | 38   | 22.7 | 23.5 | 3.7 | 8.5  | 4.5   | 11.5 | 11.5 | 11.5 | 8.5 | 40.8 | 21 |
| ; | SH30   | SBG(S)30           | 84  | 42   | 42   | 24   | 24   | 4   | 7    | 4     | 7    | -    | -    | -   | 53   | 37 |
| 1 | SH35   | SBG(S)35           | 88  | 43   | 43   | 21.5 | 22   | 4   | 2.5  | -4.5  | 2.5  | -    | -    | -   | 62   | 62 |
| ; | SH45   | SBG(S)45           | 100 | 50   | 55   | 22   | 22.5 | 4   | 0    | -10   | 0    | -    | -    | -   | 76   | 57 |
| 1 | SH55   | SBG55              | 108 | 55.5 | 55.5 | 23.5 | 22.5 | 4.5 | -1.5 | -11.5 | -    | -    | -    | -   | 67   | 62 |
|   | SH65   | SBG65              | 132 | 71.5 | 71.5 | 30.5 | 28.5 | 6   | -1   | -1    | -    | -    | -    | -   | 92   | 84 |

\* Same dimension for SBG. SBS. SPG and SPS

\* The dimension in column "a, b3 and b4" are common for FL=FLL, SL=SLL and HL=HLL.


\* If SH bellows are applying, rail end mounting holes are necessary.

\* When you select SH bellows, please select the side grease fitting for lubrication.

\* Please contact SBC for more information.

### [Calculation of bellows length]





|            | Lmin       | Lmax          |
|------------|------------|---------------|
| *SBG 15    | Stroke ÷ 4 |               |
| *SBG 20    | Stroke ÷ 5 | Lmin + Stroke |
| *SBG 25~65 | Stroke ÷ 6 |               |

M x Bolt length

M1(Block) M2(Block) M3(Rail)

M2X8

M2X8

M2X8

M3X8

M3X8

M3X8

M3X8

M3X8

M2X8

M2X8

M3X8

M3X8

M5X10

M5X10

M3X8

M4X8

M3X6

M3X6

M4X8

M4X8

M5X10

M5X10

M6X12

(Unit : mm)

А

Extended

ratio)

5

6

7

Ordering example : <u>SH25</u> – <u>70</u> / <u>420</u> 2 8 0

L max.

L min.

b4

---

----

-

12 12

---11 10 -

-

SBS

12 -

-

"B"

"A"

SBG

14

- - 32.5 35.5 32.5

14

37.5 44.5 37.5

- 31.5 41.5 31.5

36.5 46.5

- 67.5 67.5

---

-

 $\oplus$ 

b3

10 10 10

5

10.5 3.5

-

15 5 --

3.5

5

6.3 16.3

6 6 SBS

5

-

-

-

--

5

--

--

> Model number Collapsed length (mm) **B** Extended length (mm)

t3 t4

--

14

20

26

32

-

14

29

35

42

t2

8 --

-

t1

9

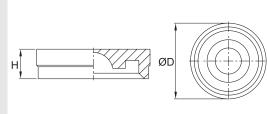
6.5

10 8

-

--

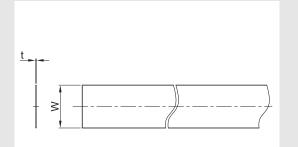
-


-

-

\_

### SBG Standard Linear Rail System


### RC Cap



|  |        |       | (Unit : | : mm) |
|--|--------|-------|---------|-------|
|  | Model  | D±0.1 | H±0.1   |       |
|  | RC 15  | 7.6   | 1.3     |       |
|  | RC 20  | 9.6   | 3.5     |       |
|  | RC 25  | 11.1  | 2.8     |       |
|  | *RC 30 | 14.2  | 3.7     |       |
|  | RC 45  | 20.2  | 4.7     |       |
|  | RC 55  | 23.2  | 6       |       |
|  | RC 65  | 26.2  | 6       |       |

RC 30 is used for SBG 30, 35 rail.SBI, SBG type use same RC cap.

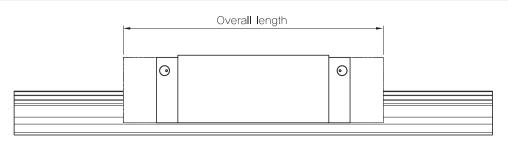
### ST Tape



|       |     | (Unit : mm) |
|-------|-----|-------------|
| Model | W   | t           |
| ST 15 | 8.3 | 0.1         |
| ST 20 | 11  | 0.1         |
| ST 25 | 13  | 0.1         |
| ST 30 | 17  | 0.1         |
| ST 35 | 21  | 0.1         |
| ST 45 | 30  | 0.1         |
| ST 55 | 34  | 0.1         |
| ST 65 | 40  | 0.1         |

### Ordering example : ST15 - 1000L

0 0


### Model number

Length

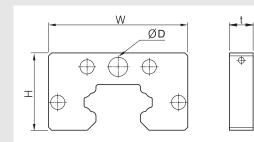
• Equivalent rail is used for SBG, SBS, SPG, SPS

### Seal and MF container

### [Method and overall length with each seal]



| • E : End seal S : Scraper F : MF (Self lubricant) (U |                    |       |       |       |       |       | (Unit : mm) |       |         |
|-------------------------------------------------------|--------------------|-------|-------|-------|-------|-------|-------------|-------|---------|
| Additional seal Standard                              |                    |       | DD    | ZZ    | KK    | MF    | MFDD        | MFZZ  | MFKK    |
| Indicatio                                             | Indication of seal |       | E+E   | E+S   | E+E+S | F+E   | F+E+E       | F+E+S | F+E+E+S |
|                                                       | 15                 | 60.8  | 66.8  | 65.2  | 71.2  | -     | -           | -     | -       |
|                                                       | 15V                | 44.9  | 50.9  | 49.3  | 55.3  | -     | -           | -     | -       |
|                                                       | 20                 | 77.2  | 83.6  | 82.6  | 89    | 93.2  | 99.6        | 98.6  | 105     |
|                                                       | 20L                | 93.2  | 99.6  | 98.6  | 105   | 109.2 | 115.6       | 114.6 | 121     |
|                                                       | 20V                | 54.2  | 60.6  | 59.6  | 66    | 70.2  | 76.6        | 75.6  | 82      |
|                                                       | 25                 | 86.9  | 93.3  | 92.7  | 99.1  | 102.9 | 109.3       | 108.7 | 115.1   |
|                                                       | 25L                | 106.4 | 112.8 | 112.2 | 118.6 | 122.4 | 128.8       | 128.2 | 134.6   |
| <b>•</b> "                                            | 25V                | 62.6  | 69    | 68.4  | 74.8  | 78.6  | 85          | 84.4  | 90.8    |
| Overall<br>length                                     | 30                 | 100   | 104.6 | 105.4 | 110   | 116   | 120.6       | 121.4 | 126     |
| with seal                                             | 30L                | 122.5 | 127.1 | 127.9 | 132.5 | 138.5 | 143.1       | 143.9 | 148.5   |
|                                                       | 35                 | 112.6 | 117.2 | 117.4 | 122   | 128.6 | 133.2       | 133.4 | 138     |
|                                                       | 35L                | 138.1 | 142.7 | 142.9 | 147.5 | 154.1 | 158.7       | 158.9 | 163.5   |
|                                                       | 45                 | 140.3 | 145.1 | 145.2 | 150   | 156.3 | 161.1       | 161.2 | 166     |
|                                                       | 45L                | 172.3 | 177.1 | 177.2 | 182   | 188.3 | 193.1       | 193.2 | 198     |
|                                                       | 55                 | 166.8 | 172.8 | 170.4 | 176.4 | -     | -           | -     | -       |
|                                                       | 55L                | 204.8 | 210.8 | 208.4 | 214.4 | -     | -           | -     | -       |
|                                                       | 65                 | 195.2 | 201.2 | 202.4 | 208.4 | -     | -           | -     | -       |
|                                                       | 65L                | 255.2 | 261.2 | 262.4 | 268.4 | -     | -           | -     | -       |


• Bottom seal of SBG(S) type is integrated with bottom retainer. (Except SBG, SBS15)

• If block is assembled with MF container, the grease fitting is not supplied. If you would like to feed the grease to the block, please order side grease fitting type.

Linear Rail System

### SBG Standard Linear Rail System

[Dimension of MF container]



|           |       |    |   | (    | Unit : mm) | ) |
|-----------|-------|----|---|------|------------|---|
| Reference | Model | W  | t | Н    | D          | Ī |
|           | 20    | 43 | 8 | 24   | 6.5        |   |
|           | 25    | 47 | 8 | 26.1 | 6.5        |   |
| MF        | 30    | 59 | 8 | 34.5 | 6.5        |   |
|           | 35    | 68 | 8 | 40   | 6.5        |   |
|           | 45    | 84 | 8 | 49   | 8.5        |   |

### × Container is available for SBG(S), SPG(S) 20~45

### [Seal resistance]

For the maximum value of seal resistance of SBG standard type per block, in which grease is not applied.

\* Scraper has no resistance because it is not contacting rail.

### (Unit : N) MF Model End seal SBG 15 1.96 -SBG 20 2.58 1.61 SBG 25 3.92 4.21 SBG 30 7.84 6.37 SBG 35 11.76 7.06 SBG 45 19.6 7.35 SBG 55 19.6 -SBG 65 34.3 -

### **Linear Rail System**

(Unit : mm)

L0

38.9

47.8

59.6

-

-

-

-

| SBG uses two types of grease according to working conditions. |  |
|---------------------------------------------------------------|--|
| For details, please see the technical data for grease.        |  |
|                                                               |  |

### SBG Standard Linear Rail System

### HT high temperature end plate

HT Length

8

10

10.5

11.5

12

16

18

18

Applied model

SBG(S) 15

SBG(S) 20

SBG(S) 25

SBG(S) 30

SBG(S) 35

SBG(S) 45

SBG(S) 55

SBG(S) 65

2 8 4

\* Side grease fitting is not available for high temperature end plates

Ordering example : SBG25FL - HT - 2 - K1 - 800 - N

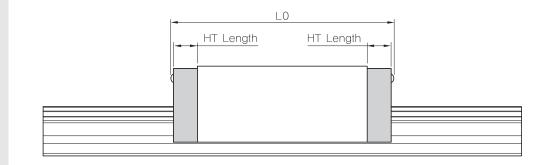
1

Reference

HT 15

HT 20

HT 25


HT 30

HT 35

HT 45

HT 55

HT 65



L0

54.8

70.8

83.9

98.4

110.4

138

162

194

6 6

\* All plastic components are replace with steel or aluminum in the High Temperature Blocks.

Overall length

L0

-

86.8

103.4

120.9

135.9

170

200

254

A High temperature

end plate

Block quantity

Applied model

SBS 15V

SBS 20V

SBS 25V

\_

-

\_

-

-

Preload

6 Rail length

Accuracy

Applied model

SBG(S) 20L

SBG(S) 25L

SBG(S) 30L

SBG(S) 35L

SBG(S) 45L

SBG(S) 55L

SBG(S) 65L

Model

Grease and nipple specification [Grease] SBG uses two ty

### SBG Standard Linear Rail System

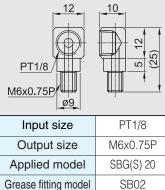
(1) Standard grease fitting (Front grease fitting)

(5.7)

M4x0.7P

M6x0.75P

PT1/8,


a Linear Rail System

| (12)    | M6x0.75P      |          |
|---------|---------------|----------|
| M4x0 7P | Specification | M6x0 75P |

| C | Specification        | M6x0.75P              |
|---|----------------------|-----------------------|
| 5 | Applied model        | SBG(S) 20, 25, 30, 35 |
|   | Grease fitting model | S4C                   |

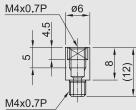
| r | size   | 30~35,   | two   | pieces | of FS |  |
|---|--------|----------|-------|--------|-------|--|
| n | le cor | nector a | re an | nlied  |       |  |





|      | * For size 30~35, tw<br>nipple connector are a |  |
|------|------------------------------------------------|--|
| (07) | PT1/8<br>M6x0.75P                              |  |
|      | Input size                                     |  |

|       | PT1/8    |
|-------|----------|
| PT1/8 | Input si |


| PT1/8            | Input size           | PT1/8             |
|------------------|----------------------|-------------------|
| M6x0.75P         | Output size          | PT1/8             |
| BG(S) 25, 30, 35 | Applied model        | SBG(S) 45, 55, 65 |
| SB01             | Grease fitting model | SB21              |

| HEX.8                | Ø6.6                  | HE)<br>PT1 |
|----------------------|-----------------------|------------|
| Specification        | M6x0.75P              | Speci      |
| Applied model        | SBG(S) 20, 25, 30, 35 | Applied    |
| Grease fitting model | S3N                   | Grease fit |

~ ~ ~ ~

| M6x0.75P              | Specification        | PT1/8             |
|-----------------------|----------------------|-------------------|
| SBG(S) 20, 25, 30, 35 | Applied model        | SBG(S) 45, 55, 65 |
| S3N                   | Grease fitting model | S4N               |

### (3) FS nipple connector for side grease fitting (FL. FLL flange type only) \*Please see the page @/36 for assembling the nipple connector.



(2) Side grease fitting

R1.5

M4x0.7P

Specification

Applied model

Grease fitting model

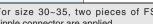
| ation | M4x0.7P |  |  |
|-------|---------|--|--|

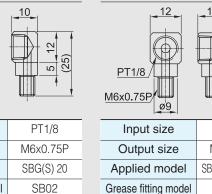
(5.7)

6

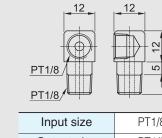
M4x0.7P

SBG(S) 15


S1N


| Specification        | M4x0.7P   |
|----------------------|-----------|
| Applied model        | SBG(S) 15 |
| Grease fitting model | S1C       |

|  | M6x0.75P      |    |              |
|--|---------------|----|--------------|
|  | Specification | n  | M6x0         |
|  | Applied mode  | el | SBG(S) 20, 2 |


M6x0.75P Ø9

|   | Specification        | M6x0       |
|---|----------------------|------------|
| 5 | Applied model        | SBG(S) 20, |
|   | Grease fitting model | S4         |





| 12<br>Ø9 |                 | <u>PT1/</u><br>PT1/ |
|----------|-----------------|---------------------|
| ize      | PT1/8           | Inp                 |
| size     | M6x0.75P        | Out                 |
|          | 000/01 05 00 05 |                     |



# M6x1.0P

|                 |                      |             |           | (Unit : m |
|-----------------|----------------------|-------------|-----------|-----------|
| Spec            | cification           | M6x1.0P, Eu | rope type | Э         |
| Applied model   | Grease fitting model | Symbol      | L         | L1        |
|                 | E2N                  | None        | 13.5      | 7         |
| SBG(S)<br>20~35 | E2D                  | DD, ZZ      | 13.5      | 10        |
| 20.300          | E2Z                  | KK          | 13.5      | 13        |
|                 |                      |             |           |           |

Specification

Applied model Grease fitting model

Specification

Applied model Grease fitting model

SBG(S) 15

SBG(S) 20~35

1N

1D

1Z

A2N

A2D

A2Z

|               |                      |              |    | (Unit : mm) |
|---------------|----------------------|--------------|----|-------------|
| Spec          | cification           | PT 1/        | /8 |             |
| Applied model | Grease fitting model | Symbol       | L  | L1          |
| SBG(S)        | 4N                   | None, DD, ZZ | 17 | 12          |
| 45~65         | 4D                   | KK           | 17 | 16          |

mm)

(Unit : mm)

L1

5.5

9

11

(Unit : mm)

L1

7

10

13

M4x0.7P

M6x0.75P, Asia type

7

5

5

13.5

13.5

13.5

Symbol

None

DD, ZZ

ΚK

Symbol

None

DD, ZZ

ΚK

a/92



(25)

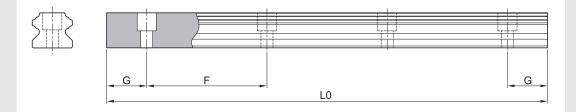
SBG Standard Linear Rail System

### Linear Rail System

### SBG Standard Linear Rail System

Ordering example

| $\frac{\mathbf{SBG20}}{[1]} \frac{\mathbf{FL}}{[2]} - \frac{\mathbf{N}}{[3]} - \frac{\mathbf{MF}}{[4]}$                                                                                                                                                                                                                                                               | - <u>ZZ</u> -                  | <b>K1</b><br>[6] |          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|----------|--|
| <ul> <li>[1] Model : SBG, SBS, SPG, SPS</li> <li>[2] Block type : FL, FLL, SL. SLL, HL, HLL, F</li> <li>[3] Position of grease fitting : None (front), N</li> <li>[4] Container : No symbol (standard), DF (hi</li> <li>[5] Seal : No symbol (standard), DD, ZZ, KK</li> <li>[6] Preload : K1, K2, K3</li> <li>* "K3" Preload is not available for SBG, SB</li> </ul> | I (side)<br>gh dust protectior | n), MF (self lul | pricant) |  |
| Ordering example for rail]                                                                                                                                                                                                                                                                                                                                            |                                |                  |          |  |
| $\frac{\text{SBG20}}{[1]} - \frac{1000L}{[2]} - \frac{B}{[3]}$                                                                                                                                                                                                                                                                                                        |                                |                  |          |  |
| [1] Model : SBG<br>[2] Rail length<br>[3] Bottom mounting : No symbol (standard)                                                                                                                                                                                                                                                                                      | , B (bottom mour               | nting rail)      |          |  |
| <ul> <li>※ If only rail is ordered, N grade is available</li> <li>※ An order for rail only, please mark it as SI SBG, SBS, SPG, SPS</li> </ul>                                                                                                                                                                                                                        |                                | ail is used for  |          |  |
| 4                                                                                                                                                                                                                                                                                                                                                                     |                                |                  |          |  |


[Ordering for assembled rail and block]

[1] Model : SBG, SBS, SPG, SPS
[2] Block type : FL, FLL, FV, SL. SLL, SV, HL, HLL
[3] Position of grease fitting : None (front), N (side)
[4] Container : No symbol (standard), DF (high dust protection), MF (self lubricant
[5] Seal : No symbol (standard), DD, ZZ, KK
[6] Block quantity on rail
[7] Preload : K1, K2 ,K3
[8] Rail length
[9] Accuracy : N, H, P
[10] Surface treatment
[11] (B) Bottom mounting rail : No symbol (standard)
[12] Rail : number of rails per axis, 1=I, 2=II... 4=IV etc.

- $\ensuremath{\mathbbmu}$  We recommend block and rail assembled to be ordered where high-precision and high-rigidity are required.
- $\, \times \,$  For surface treatment, please mark according to each surface treatment symbol.
- $\, \times \,$  If special G dimension is required, please mark when you place an order.
- \* Please contact SBC for high temperature order.
- % "K3" Preload is not available for SBG, SBS 15 type

### SBG Standard Linear Rail System

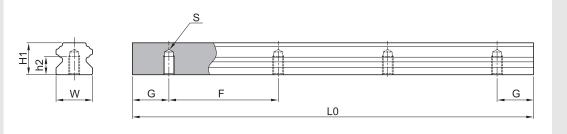
### Standard and Max. Length of SBG rail



|                    |       |       |       |       |       |       |       | (Unit : mm) |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------------|
| Model number       | SBG15 | SBG20 | SBG25 | SBG30 | SBG35 | SBG45 | SBG55 | SBG65       |
|                    | 160   | 220   | 220   | 280   | 280   | 570   | 780   | 1270        |
|                    | 220   | 280   | 280   | 440   | 440   | 885   | 900   | 1570        |
|                    | 280   | 240   | 340   | 600   | 600   | 1095  | 1020  | 2020        |
|                    | 340   | 460   | 460   | 760   | 760   | 1200  | 1140  | 2470        |
|                    | 460   | 640   | 640   | 1000  | 1000  | 1410  | 1260  | 2620        |
|                    | 640   | 820   | 820   | 1240  | 1240  | 1620  | 1380  | 2920        |
|                    | 820   | 1000  | 1000  | 1480  | 1480  | 1830  | 1500  | 3070        |
| Oto as do asl      | 1000  | 1240  | 1240  | 1640  | 1640  | 2040  | 1620  | -           |
| Standard<br>length | 1240  | 1480  | 1480  | 1800  | 1800  | 2250  | 1740  | -           |
| lengin             | 1480  | 1600  | 1600  | 2040  | 2040  | 2460  | 1860  | -           |
|                    | 1600  | 1840  | 1840  | 2200  | 2200  | 2985  | 1980  | -           |
|                    | 1960  | 2080  | 2080  | 2520  | 2520  | 3510  | 2220  | -           |
|                    | 2200  | 2200  | 2200  | 2840  | 2840  | -     | 2580  | -           |
|                    | 2500  | 2500  | 2500  | 3000  | 3000  | -     | 2940  | -           |
|                    | 2860  | 2960  | 2980  | 3480  | 3480  | -     | 3540  | -           |
|                    | -     | 3520  | 3520  | -     | -     | -     | -     | -           |
|                    | -     | 4000  | 4000  | -     | -     | -     | -     | -           |
| F                  | 60    | 60    | 60    | 80    | 80    | 105   | 120   | 150         |
| G                  | 20    | 20    | 20    | 20    | 20    | 22.5  | 30    | 35          |
| L0(Max length)     | 3,000 | 4,000 | 4,000 | 4,000 | 4,000 | 4,000 | 4,000 | 4,000       |

\* The rail for SBG(S), SPG(S) is identical.

\* If the maximum length exceeds this size, butt joints can be supplied.


\* For more information about butt jointing, please refer to the page of safety design.

\* If the G is not standard, please indicate it in the order sheet.

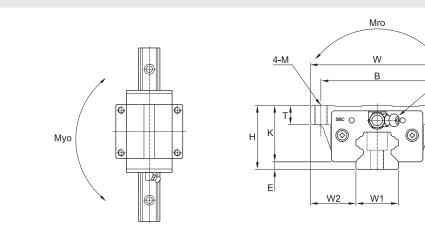
| Linear | Rail | System |  |
|--------|------|--------|--|
|        |      |        |  |

### SBG Standard Linear Rail System

### Bottom mounting rail (SBG-B type)



|                 |    |      |        |    |      |     |                    | (Unit : mm)      |
|-----------------|----|------|--------|----|------|-----|--------------------|------------------|
| Model<br>number | W1 | H1   | S      | h2 | G    | F   | L0<br>(Max length) | Weight<br>(kg/m) |
| SBG 15-B        | 15 | 15   | M5x0.8 | 8  | 20   | 60  | 3,000              | 1.53             |
| SBG 20-B        | 20 | 17.5 | M6     | 10 | 20   | 60  | 4,000              | 2.28             |
| SBG 25-B        | 23 | 21.8 | M6     | 12 | 20   | 60  | 4,000              | 3.21             |
| SBG 30-B        | 28 | 25   | M8     | 15 | 20   | 80  | 4,000              | 4.58             |
| SBG 35-B        | 34 | 29   | M8     | 17 | 20   | 80  | 4,000              | 6.62             |
| SBG 45-B        | 45 | 38   | M12    | 24 | 22.5 | 105 | 4,000              | 11.43            |


\* The rail for SBG(S), SPG(S) is identical

\* If the maximum length exceeds this size, please contact SBC.

a/97

### SBG Standard Linear Rail System

### SBG-FL/FLL



2-Q1

١ أ

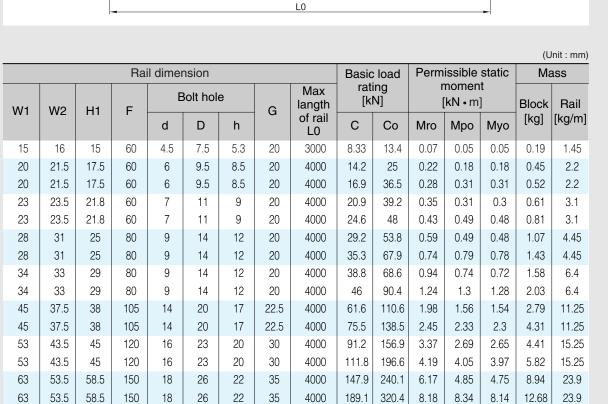
4-\*S

|           | Mou | nting | dimen | sion |     |        |         |      |       | Bloc  | k dim | ensio | ns   |      |         |         |      |
|-----------|-----|-------|-------|------|-----|--------|---------|------|-------|-------|-------|-------|------|------|---------|---------|------|
| Model     | н   | w     | L     | E    | Мо  | unting | y tap h | nole | 11    | T±1   | к     |       |      | Grea | se fitt | ing     |      |
|           |     | vv    | L     | L    | В   | J      | М       | *S   |       | 1 1 1 |       | T1    | N1   | T2   | N2      | Q1      | *Q2  |
| SBG15 FL  | 24  | 47    | 60.8  | 3    | 38  | 30     | M5      | M4   | 38.8  | 7.2   | 21    | 4     | 5.5  | 4.5  | 4.5     | M4x0.7  | Ø3.5 |
| SBG20 FL  | 30  | 63    | 77.2  | 3.5  | 53  | 40     | M6      | M5   | 50.8  | 9     | 26.5  | 7     | 12   | 7    | 5       | M6x0.75 | Ø5.5 |
| SBG20 FLL | 30  | 63    | 93.2  | 3.5  | 53  | 40     | M6      | M5   | 66.8  | 9     | 26.5  | 7     | 12   | 7    | 5       | M6x0.75 | Ø5.5 |
| SBG25 FL  | 36  | 70    | 86.9  | 6.5  | 57  | 45     | M8      | M6   | 59.5  | 10    | 29.5  | 8.2   | 12   | 8.1  | 5.5     | M6x0.75 | Ø5.5 |
| SBG25 FLL | 36  | 70    | 106.4 | 6.5  | 57  | 45     | M8      | M6   | 79    | 10    | 29.5  | 8.2   | 12   | 8.1  | 5.5     | M6x0.75 | Ø5.5 |
| SBG30 FL  | 42  | 90    | 100   | 7    | 72  | 52     | M10     | M8   | 70.4  | 12    | 35    | 8.5   | 12   | 8.5  | 5.5     | M6x0.75 | Ø5.5 |
| SBG30 FLL | 42  | 90    | 122.5 | 7    | 72  | 52     | M10     | M8   | 92.9  | 12    | 35    | 8.5   | 12   | 8.5  | 5.5     | M6x0.75 | Ø5.5 |
| SBG35 FL  | 48  | 100   | 112.6 | 7.5  | 82  | 62     | M10     | M8   | 80.4  | 13    | 40.5  | 8     | 12   | 8    | 6       | M6x0.75 | Ø5.5 |
| SBG35 FLL | 48  | 100   | 138.1 | 7.5  | 82  | 62     | M10     | M8   | 105.9 | 13    | 40.5  | 8     | 12   | 8    | 6       | M6x0.75 | Ø5.5 |
| SBG45 FL  | 60  | 120   | 140.3 | 10   | 100 | 80     | M12     | M10  | 98    | 15    | 50    | 10    | 16.5 | 10   | 8       | PT1/8   | Ø8.5 |
| SBG45 FLL | 60  | 120   | 172.3 | 10   | 100 | 80     | M12     | M10  | 130   | 15    | 50    | 10    | 16.5 | 10   | 8       | PT1/8   | Ø8.5 |
| SBG55 FL  | 70  | 140   | 166.8 | 13   | 116 | 95     | M14     | M12  | 118   | 17    | 57    | 12    | 16.5 | 10.5 | 10      | PT1/8   | Ø8.5 |
| SBG55 FLL | 70  | 140   | 204.8 | 13   | 116 | 95     | M14     | M12  | 156   | 17    | 57    | 12    | 16.5 | 10.5 | 10      | PT1/8   | Ø8.5 |
| SBG65 FL  | 90  | 170   | 195.2 | 17.5 | 142 | 110    | M16     | M14  | 147   | 23    | 72.5  | 15    | 16.5 | 12   | 10      | PT1/8   | Ø8.5 |
| SBG65 FLL | 90  | 170   | 255.2 | 17.5 | 142 | 110    | M16     | M14  | 207   | 23    | 72.5  | 15    | 16.5 | 12   | 10      | PT1/8   | Ø8.5 |

C (Basic dynamic load rating), Co (Basic static load rating)

S: Bolt size for bottom mounting type of block.

### Linear Rail System


4-Q2

T2

N2

d





Мро

L1

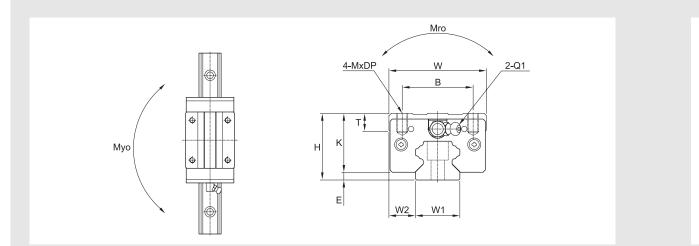
(N1)

T1

ØD

G

ød


H

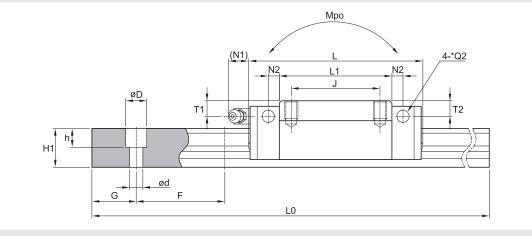
N2

\*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.

### SBG Standard Linear Rail System

### SBG-SL/SLL

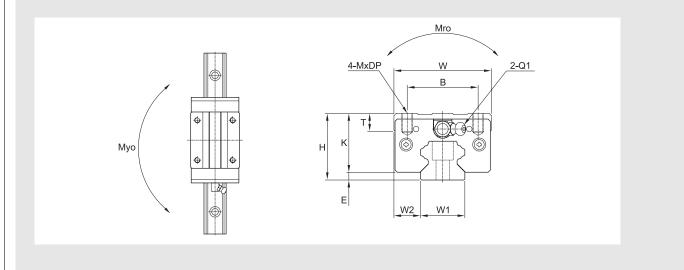



|           | Mou | nting | dimen | ision |    |        |         |     |       | Bloc  | k dim | ensio | ns   |      |         |         |      |
|-----------|-----|-------|-------|-------|----|--------|---------|-----|-------|-------|-------|-------|------|------|---------|---------|------|
| Model     | н   | W     | L     | Е     | Мо | unting | g tap h | ole | L1    | T±1   | к     |       |      | Grea | se fitt | ing     |      |
|           | 11  | vv    | L     | Ľ     | В  | J      | М       | DP  |       | 1 1 1 |       | T1    | N1   | T2   | N2      | Q1      | *Q2  |
| SBG15 SL  | 28  | 34    | 60.8  | 3     | 26 | 26     | M4      | 5   | 38.8  | 8     | 25    | 8     | 5.5  | 8.5  | 4.5     | M4x0.7  | Ø3.5 |
| SBG20 SL  | 30  | 44    | 77.2  | 3.5   | 32 | 36     | M5      | 8   | 50.8  | 8     | 26.5  | 7     | 12   | 7    | 5       | M6x0.75 | Ø5.5 |
| SBG20 SLL | 30  | 44    | 93.2  | 3.5   | 32 | 50     | M5      | 8   | 66.8  | 8     | 26.5  | 7     | 12   | 7    | 5       | M6x0.75 | Ø5.5 |
| SBG25 SL  | 40  | 48    | 86.9  | 6.5   | 35 | 35     | M6      | 8   | 59.5  | 12    | 33.5  | 12.2  | 12   | 12.1 | 5.5     | M6x0.75 | Ø5.5 |
| SBG25 SLL | 40  | 48    | 106.4 | 6.5   | 35 | 50     | M6      | 8   | 79    | 12    | 33.5  | 12.2  | 12   | 12.1 | 5.5     | M6x0.75 | Ø5.5 |
| SBG30 SL  | 45  | 60    | 100   | 7     | 40 | 40     | M8      | 10  | 70.4  | 12    | 38    | 11.5  | 12   | 11.5 | 5.5     | M6x0.75 | Ø5.5 |
| SBG30 SLL | 45  | 60    | 122.5 | 7     | 40 | 60     | M8      | 10  | 92.9  | 12    | 38    | 11.5  | 12   | 11.5 | 5.5     | M6x0.75 | Ø5.5 |
| SBG35 SL  | 55  | 70    | 112.6 | 7.5   | 50 | 50     | M8      | 12  | 80.4  | 15    | 47.5  | 15    | 12   | 15   | 6       | M6x0.75 | Ø5.5 |
| SBG35 SLL | 55  | 70    | 138.1 | 7.5   | 50 | 72     | M8      | 12  | 105.9 | 15    | 47.5  | 15    | 12   | 15   | 6       | M6x0.75 | Ø5.5 |
| SBG45 SL  | 70  | 86    | 140.3 | 10    | 60 | 60     | M10     | 13  | 98    | 15    | 60    | 15    | 16.5 | 20   | 8       | PT1/8   | Ø8.5 |
| SBG45 SLL | 70  | 86    | 172.3 | 10    | 60 | 80     | M10     | 13  | 130   | 15    | 60    | 15    | 16.5 | 20   | 8       | PT1/8   | Ø8.5 |
| SBG55 SL  | 80  | 100   | 166.8 | 13    | 75 | 75     | M12     | 18  | 118   | 18    | 67    | 18    | 16.5 | 20.5 | 10      | PT1/8   | Ø8.5 |
| SBG55 SLL | 80  | 100   | 204.8 | 13    | 75 | 95     | M12     | 18  | 156   | 18    | 67    | 18    | 16.5 | 20.5 | 10      | PT1/8   | Ø8.5 |
| SBG65 SL  | 90  | 126   | 195.2 | 17.5  | 76 | 70     | M16     | 20  | 147   | 23    | 72.5  | 23    | 16.5 | 12   | 10      | PT1/8   | Ø8.5 |
| SBG65 SLL | 90  | 126   | 255.2 | 17.5  | 76 | 120    | M16     | 20  | 207   | 23    | 72.5  | 23    | 16.5 | 12   | 10      | PT1/8   | Ø8.5 |

C (Basic dynamic load rating), Co (Basic static load rating)

(Unit : mm)

### \*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.


SBG Standard Linear Rail System

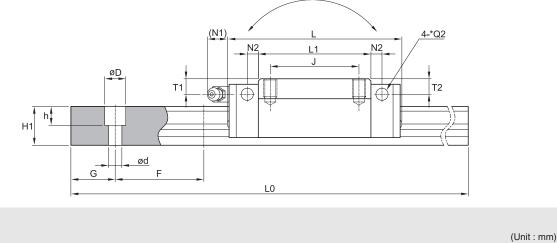


|      |      |      | Rai | l dimer | nsion    |     |      |               | Basic       |       |      | issible           |      | Ma    | ass    |
|------|------|------|-----|---------|----------|-----|------|---------------|-------------|-------|------|-------------------|------|-------|--------|
| W1   | W2   | H1   | F   | E       | Bolt hol | е   | G    | Max<br>langth | rati<br>[kl |       |      | nomen<br>[kN • m] |      | Block | Rail   |
| ** 1 | **2  |      |     | d       | D        | h   | u    | of rail<br>L0 | С           | Со    | Mro  | Мро               | Муо  | [kg]  | [kg/m] |
| 15   | 9.5  | 15   | 60  | 4.5     | 7.5      | 5.3 | 20   | 3000          | 8.33        | 13.4  | 0.07 | 0.05              | 0.05 | 0.21  | 1.45   |
| 20   | 12   | 17.5 | 60  | 6       | 9.5      | 8.5 | 20   | 4000          | 14.2        | 25    | 0.22 | 0.18              | 0.18 | 0.34  | 2.2    |
| 20   | 12   | 17.5 | 60  | 6       | 9.5      | 8.5 | 20   | 4000          | 16.9        | 36.5  | 0.28 | 0.31              | 0.31 | 0.44  | 2.2    |
| 23   | 12.5 | 21.8 | 60  | 7       | 11       | 9   | 20   | 4000          | 20.9        | 39.2  | 0.35 | 0.31              | 0.3  | 0.57  | 3.1    |
| 23   | 12.5 | 21.8 | 60  | 7       | 11       | 9   | 20   | 4000          | 24.6        | 48    | 0.43 | 0.49              | 0.48 | 0.74  | 3.1    |
| 28   | 16   | 25   | 80  | 9       | 14       | 12  | 20   | 4000          | 29.2        | 53.8  | 0.59 | 0.49              | 0.48 | 0.92  | 4.45   |
| 28   | 16   | 25   | 80  | 9       | 14       | 12  | 20   | 4000          | 35.3        | 67.9  | 0.74 | 0.79              | 0.78 | 1.22  | 4.45   |
| 34   | 18   | 29   | 80  | 9       | 14       | 12  | 20   | 4000          | 38.8        | 68.6  | 0.94 | 0.74              | 0.72 | 1.57  | 6.4    |
| 34   | 18   | 29   | 80  | 9       | 14       | 12  | 20   | 4000          | 46          | 90.4  | 1.24 | 1.3               | 1.28 | 2.05  | 6.4    |
| 45   | 20.5 | 38   | 105 | 14      | 20       | 17  | 22.5 | 4000          | 61.6        | 110.6 | 1.98 | 1.56              | 1.54 | 2.94  | 11.25  |
| 45   | 20.5 | 38   | 105 | 14      | 20       | 17  | 22.5 | 4000          | 75.5        | 138.5 | 2.45 | 2.33              | 2.3  | 3.87  | 11.25  |
| 53   | 23.5 | 45   | 120 | 16      | 23       | 20  | 30   | 4000          | 91.2        | 156.9 | 3.37 | 2.69              | 2.65 | 4.51  | 15.25  |
| 53   | 23.5 | 45   | 120 | 16      | 23       | 20  | 30   | 4000          | 111.8       | 196.6 | 4.19 | 4.05              | 3.97 | 5.68  | 15.25  |
| 63   | 31.5 | 58.5 | 150 | 18      | 26       | 22  | 35   | 4000          | 147.9       | 240.1 | 6.17 | 4.85              | 4.75 | 7.43  | 23.9   |
| 63   | 31.5 | 58.5 | 150 | 18      | 26       | 22  | 35   | 4000          | 189.1       | 320.4 | 8.18 | 8.34              | 8.14 | 12.05 | 23.9   |

### SBG Standard Linear Rail System

### SBS-SL, HL/SLL, HLL




|           | Mou | nting | dimen | sion |    |        |         |      |       | Bloc | k dim | ensio | ns   |      |         |         |      |
|-----------|-----|-------|-------|------|----|--------|---------|------|-------|------|-------|-------|------|------|---------|---------|------|
| Model     | Н   | W     | L     | Е    | Мо | unting | g tap h | nole | L1    | T±1  | к     |       |      | Grea | se fitt | ing     |      |
|           | 11  | vv    | L     | E    | В  | J      | М       | DP   |       | 111  |       | T1    | N1   | T2   | N2      | Q1      | *Q2  |
| SBS15 SL  | 24  | 34    | 60.8  | 3    | 26 | 26     | M4      | 5    | 38.8  | 6    | 21    | 4     | 5.5  | 4.5  | 4.5     | M4x0.7  | Ø3.5 |
| SBS20 SL  | 28  | 44    | 77.2  | 3.5  | 32 | 32     | M5      | 7    | 50.8  | 7.5  | 24.5  | 5     | 12   | 5    | 5       | M6x0.75 | Ø5.5 |
| SBS20 SLL | 28  | 44    | 93.2  | 3.5  | 32 | 50     | M5      | 7    | 66.8  | 7.5  | 24.5  | 5     | 12   | 5    | 5       | M6x0.75 | Ø5.5 |
| SBS25 SL  | 33  | 48    | 86.9  | 6.5  | 35 | 35     | M6      | 6    | 59.5  | 8    | 26.5  | 5.2   | 12   | 5.1  | 5.5     | M6x0.75 | Ø5.5 |
| SBS25 SLL | 33  | 48    | 106.4 | 6.5  | 35 | 50     | M6      | 6    | 79    | 8    | 26.5  | 5.2   | 12   | 5.1  | 5.5     | M6x0.75 | Ø5.5 |
| SBS25 HL  | 36  | 48    | 86.9  | 6.5  | 35 | 35     | M6      | 8    | 59.5  | 11   | 29.5  | 8.2   | 12   | 8.1  | 5.5     | M6x0.75 | Ø5.5 |
| SBS25 HLL | 36  | 48    | 106.4 | 6.5  | 35 | 50     | M6      | 8    | 79    | 11   | 29.5  | 8.2   | 12   | 8.1  | 5.5     | M6x0.75 | Ø5.5 |
| SBS30 SL  | 42  | 60    | 100   | 7    | 40 | 40     | M8      | 10   | 70.4  | 12   | 35    | 8.5   | 12   | 8.5  | 5.5     | M6x0.75 | Ø5.5 |
| SBS30 SLL | 42  | 60    | 122.5 | 7    | 40 | 60     | M8      | 10   | 92.9  | 12   | 35    | 8.5   | 12   | 8.5  | 5.5     | M6x0.75 | Ø5.5 |
| SBS35 SL  | 48  | 70    | 112.6 | 7.5  | 50 | 50     | M8      | 12   | 80.4  | 15   | 40.5  | 8     | 12   | 8    | 6       | M6x0.75 | Ø5.5 |
| SBS35 SLL | 48  | 70    | 138.1 | 7.5  | 50 | 72     | M8      | 12   | 105.9 | 15   | 40.5  | 8     | 12   | 8    | 6       | M6x0.75 | Ø5.5 |
| SBS45 SL  | 60  | 86    | 140.3 | 10   | 60 | 60     | M10     | 10   | 98    | 15   | 50    | 10    | 16.5 | 10   | 8       | PT1/8   | Ø8.5 |
| SBS45 SLL | 60  | 86    | 172.3 | 10   | 60 | 80     | M10     | 10   | 130   | 15   | 50    | 10    | 16.5 | 10   | 8       | PT1/8   | Ø8.5 |

C (Basic dynamic load rating), Co (Basic static load rating)

\*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.

### Linear Rail System

SBG Standard Linear Rail System



Мро

|     |      |      | Rai | l dimer | nsion    |     |      |               | Basic       | load  | Perm | issible         | static | Ma    | ass    |
|-----|------|------|-----|---------|----------|-----|------|---------------|-------------|-------|------|-----------------|--------|-------|--------|
| W1  | W2   | H1   | F   | E       | olt hole | Э   | G    | Max<br>langth | rati<br>[kl | 9     |      | nomen<br>kN • m |        | Block | Rail   |
| vvi | vvz  |      | 1   | d       | D        | h   | u    | of rail<br>L0 | С           | Со    | Mro  | Мро             | Муо    | [kg]  | [kg/m] |
| 15  | 9.5  | 15   | 60  | 4.5     | 7.5      | 5.3 | 20   | 3000          | 8.33        | 13.4  | 0.07 | 0.05            | 0.05   | 0.17  | 1.45   |
| 20  | 12   | 17.5 | 60  | 6       | 9.5      | 8.5 | 20   | 4000          | 14.2        | 25    | 0.22 | 0.18            | 0.18   | 0.31  | 2.2    |
| 20  | 12   | 17.5 | 60  | 6       | 9.5      | 8.5 | 20   | 4000          | 16.9        | 36.5  | 0.28 | 0.31            | 0.31   | 0.39  | 2.2    |
| 23  | 12.5 | 21.8 | 60  | 7       | 11       | 9   | 20   | 4000          | 20.9        | 39.2  | 0.35 | 0.31            | 0.3    | 0.42  | 3.1    |
| 23  | 12.5 | 21.8 | 60  | 7       | 11       | 9   | 20   | 4000          | 24.6        | 48    | 0.43 | 0.49            | 0.48   | 0.54  | 3.1    |
| 23  | 12.5 | 21.8 | 60  | 7       | 11       | 9   | 20   | 4000          | 20.9        | 39.2  | 0.35 | 0.31            | 0.3    | 0.49  | 3.1    |
| 23  | 12.5 | 21.8 | 60  | 7       | 11       | 9   | 20   | 4000          | 24.6        | 48    | 0.43 | 0.49            | 0.48   | 0.62  | 3.1    |
| 28  | 16   | 25   | 80  | 9       | 14       | 12  | 20   | 4000          | 29.2        | 53.8  | 0.59 | 0.49            | 0.48   | 0.86  | 4.45   |
| 28  | 16   | 25   | 80  | 9       | 14       | 12  | 20   | 4000          | 35.3        | 67.9  | 0.74 | 0.79            | 0.78   | 1.28  | 4.45   |
| 34  | 18   | 29   | 80  | 9       | 14       | 12  | 20   | 4000          | 38.8        | 68.6  | 0.94 | 0.74            | 0.72   | 1.27  | 6.4    |
| 34  | 18   | 29   | 80  | 9       | 14       | 12  | 20   | 4000          | 46          | 90.4  | 1.24 | 1.3             | 1.28   | 1.66  | 6.4    |
| 45  | 20.5 | 38   | 105 | 14      | 20       | 17  | 22.5 | 4000          | 61.6        | 110.6 | 1.98 | 1.56            | 1.54   | 2.30  | 11.25  |
| 45  | 20.5 | 38   | 105 | 14      | 20       | 17  | 22.5 | 4000          | 75.5        | 138.5 | 2.45 | 2.33            | 2.3    | 3.0   | 11.25  |

### SBG Standard Linear Rail System

### SBS-FV



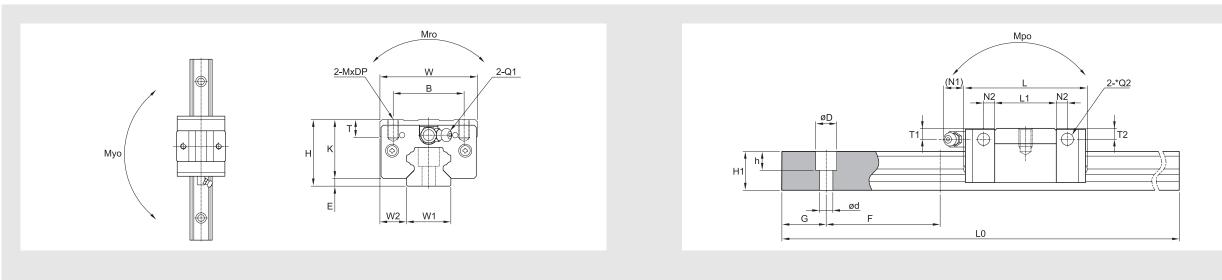
|          | Mou | Inting | dimen | sion |      |         |        |      | E     | Block c | limens | sions |      |          |         |      |
|----------|-----|--------|-------|------|------|---------|--------|------|-------|---------|--------|-------|------|----------|---------|------|
| Model    | н   | W      |       | Е    | Moun | ting ta | p hole | L1   | T±1   | к       |        |       | Grea | se fitti | ng      |      |
|          |     | vv     |       |      | В    | М       | *S     |      | 1 1 1 |         | T1     | N1    | T2   | N2       | Q1      | *Q2  |
| SBS15 FV | 24  | 47     | 44.9  | 3    | 38   | M5      | M4     | 22.9 | 7.2   | 21      | 4      | 5.5   | 4.5  | 4.5      | M4x0.7  | Ø3.5 |
| SBS20 FV | 28  | 63     | 54.2  | 3.5  | 53   | M6      | M5     | 27.8 | 7     | 24.5    | 5      | 12    | 5    | 5        | M6x0.75 | Ø5.5 |
| SBS25 FV | 33  | 70     | 62.6  | 6.5  | 57   | M8      | M6     | 35.2 | 7     | 26.5    | 5.2    | 12    | 5.1  | 5.5      | M6x0.75 | Ø5.5 |

① C (Basic dynamic load rating), Co (Basic static load rating)

**⊘** \*S: Bolt size for bottom mounting type of block.

**③** \*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.

|     |      |      | Ra | il dimer                                                   | nsion    |     |    | Basic         |             |      | issible |                 | Ma   | ass   |        |
|-----|------|------|----|------------------------------------------------------------|----------|-----|----|---------------|-------------|------|---------|-----------------|------|-------|--------|
| W1  | W2   | H1   | F  | B                                                          | olt hole | Э   | G  | Max<br>langth | rati<br>[kl |      |         | nomen<br>kN • m |      | Block | Rail   |
| vvi | **2  |      |    | d                                                          |          |     | ŭ  | of rail<br>L0 | С           | Со   | Mro     | Мро             | Муо  | [kg]  | [kg/m] |
| 15  | 16   | 15   | 60 | 4.5                                                        | 7.5      | 5.3 | 20 | 3000          | 4.48        | 7.23 | 0.04    | 0.03            | 0.03 | 0.12  | 1.45   |
| 20  | 21.5 | 17.5 | 60 | 6                                                          | 9.5      | 8.5 | 20 | 4000          | 7.65        | 13.5 | 0.12    | 0.1             | 0.1  | 0.24  | 2.2    |
| 23  | 23.5 | 21.8 | 60 | 6         9.5         8.5           7         11         9 |          |     | 20 | 4000          | 11.29       | 21.1 | 0.19    | 0.17            | 0.17 | 0.33  | 3.1    |


Linear Rail System

SBG Standard Linear Rail System

(Unit : mm)

### SBG Standard Linear Rail System

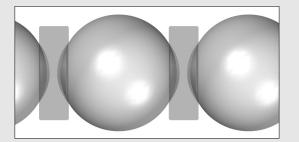
### SBS-SV



|    |         | Mou | Inting | dimen | sion |      |         |        |      | E     | Block c | limens | sions |      |          |         |      |
|----|---------|-----|--------|-------|------|------|---------|--------|------|-------|---------|--------|-------|------|----------|---------|------|
|    | Model   | н   | W      |       | Е    | Moun | ting ta | p hole | L1   | T±1   | к       |        |       | Grea | se fitti | ng      |      |
|    |         |     | vv     |       | L    | В    | М       | DP     |      | 1 1 1 |         | T1     | N1    | T2   | N2       | Q1      | *Q2  |
| SI | BS15 SV | 24  | 34     | 44.9  | 3    | 26   | M4      | 5      | 22.9 | 6     | 21      | 4      | 5.5   | 4.5  | 4.5      | M4x0.7  | Ø3.5 |
| SE | BS20 SV | 28  | 44     | 54.2  | 3.5  | 32   | M5      | 7      | 27.8 | 7.5   | 24.5    | 5      | 12    | 5    | 5        | M6x0.75 | Ø5.5 |
| SI | BS25 SV | 33  | 48     | 62.6  | 6.5  | 35   | M6      | 6      | 35.2 | 8     | 26.5    | 5.2    | 12    | 5.1  | 5.5      | M6x0.75 | Ø5.5 |

C (Basic dynamic load rating), Co (Basic static load rating)

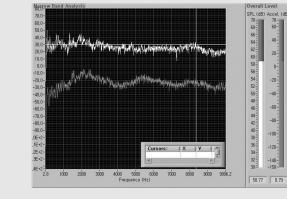
\*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.


### (Unit : mm) Rail dimension Basic load Permissible static Mass rating moment Max Bolt hole [kN] [kN•m] Rail langth Block W1 W2 H1 F G of rail [kg] [kg/m] Mro Mpo Myo С Со d D h L0 7.23 0.03 15 9.5 15 60 4.5 7.5 5.3 20 3000 4.48 0.04 0.03 0.1 1.45 12 17.5 60 0.1 0.1 20 6 9.5 8.5 20 7.65 13.5 0.12 0.19 2.2 4000 12.5 0.17 23 21.8 60 7 11 9 20 4000 11.29 21.1 0.19 0.17 0.27 3.1

a Linear Rail System

Linear Rail System

SBG Standard Linear Rail System


### SPG / SPS Spacer Linear Rail System



(Comparison of noise level)

### [Ordering example]

Ordering example for SPG/SPS type are identical with SBG type ordering. Therefore, please see the ordering example for SBG type.



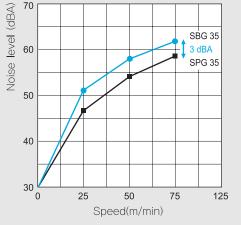
SPG / SPS Spacer Linear Rail System

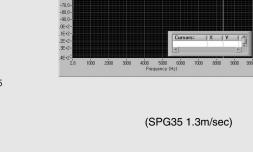
### [Grease retention]

The spacers provide grease storage areas providing long term, maintenance free operation.

### [Design feature]

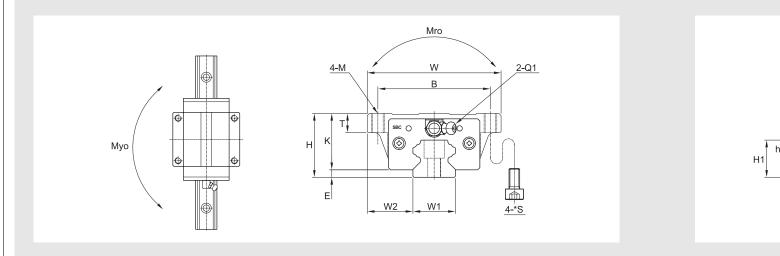
SPG, SPS type is ball spacer inserted type between balls. This spacer minimizes the noise level by eliminating metal to metal contact and storing grease which provides long term, maintenance free operation.


### [Using SBG standard rail]


SPG, SPS type are using SBG standard rail.

### [Dimensionally interchangeable with SBG type]

SPG/SPS spacer series blocks are dimensionally interchangeable with SBG/SBS blocks.








### SPG / SPS Spacer Linear Rail System

### SPG-FL/FLL



|           | Mou | nting | dimer | ision |    |         |         |     |       | Bloo  | ck dim | ensio | ns |      |         |         |      |
|-----------|-----|-------|-------|-------|----|---------|---------|-----|-------|-------|--------|-------|----|------|---------|---------|------|
| Model     | н   | W     |       | Е     | Мс | ounting | g tap h | ole | L1    | T±1   | к      |       |    | Grea | se fitt | ing     |      |
|           | 11  | vv    | L     | E     | В  | J       | М       | *S  |       | 1 1 1 |        | T1    | N1 | T2   | N2      | Q1      | *Q2  |
| SPG20 FL  | 30  | 63    | 77.2  | 3.5   | 53 | 40      | M6      | M5  | 50.8  | 9     | 26.5   | 7     | 12 | 7    | 5       | M6x0.75 | Ø5.5 |
| SPG20 FLL | 30  | 63    | 93.2  | 3.5   | 53 | 40      | M6      | M5  | 66.8  | 9     | 26.5   | 7     | 12 | 7    | 5       | M6x0.75 | Ø5.5 |
| SPG25 FL  | 36  | 70    | 86.9  | 6.5   | 57 | 45      | M8      | M6  | 59.5  | 10    | 29.5   | 8.2   | 12 | 8.1  | 5.5     | M6x0.75 | Ø5.5 |
| SPG25 FLL | 36  | 70    | 106.4 | 6.5   | 57 | 45      | M8      | M6  | 79    | 10    | 29.5   | 8.2   | 12 | 8.1  | 5.5     | M6x0.75 | Ø5.5 |
| SPG30 FL  | 42  | 90    | 100   | 7     | 72 | 52      | M10     | M8  | 70.4  | 12    | 35     | 8.5   | 12 | 8.5  | 5.5     | M6x0.75 | Ø5.5 |
| SPG30 FLL | 42  | 90    | 122.5 | 7     | 72 | 52      | M10     | M8  | 92.9  | 12    | 35     | 8.5   | 12 | 8.5  | 5.5     | M6x0.75 | Ø5.5 |
| SPG35 FL  | 48  | 100   | 112.6 | 7.5   | 82 | 62      | M10     | M8  | 80.4  | 13    | 40.5   | 8     | 12 | 8    | 6       | M6x0.75 | Ø5.5 |
| SPG35 FLL | 48  | 100   | 138.1 | 7.5   | 82 | 62      | M10     | M8  | 105.9 | 13    | 40.5   | 8     | 12 | 8    | 6       | M6x0.75 | Ø5.5 |

① C (Basic dynamic load rating), Co (Basic static load rating)

- 2 \*S: Bolt size for bottom mounting type of block.
- O \*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.

### Linear Rail System

SPG / SPS Spacer Linear Rail System

4-\*Q2

T2

Permissible static

moment

[kN • m]

0.18

0.31

0.31

0.49

0.49

0.79

0.74

1.3

Mpo Myo

0.18

0.31

0.3

0.48

0.48

0.78

0.72

1.28

N2

Мро

L1

Basic load rating

[kN]

Co

25

36.5

39.2

48

53.8

67.9

68.6

90.4

Mro

0.22

0.28

0.35

0.43

0.59

0.74

0.94

1.24

С

14.2

16.9

20.9

24.6

29.2

35.3

38.8

46

(N1)

T1

ØD

G

F

60

60

60

60

80

80

80

80

W1

20

20

23

23

28

28

34

34

W2

21.5

21.5

23.5

23.5

31

31

33

33

H1

17.5

17.5

21.8

21.8

25

25

29

29

ød

Rail dimension

d

6

6

7

7

9

9

9

9

Bolt hole

D

9.5

9.5

11

11

14

14

14

14

h

8.5

8.5

9

9

12

12

12

12

N2

L0

Max

langth

of rail

L0

4000

4000

4000

4000

4000

4000

4000

4000

G

20

20

20

20

20

20

20

20

(Unit : mm)

Rail

2.2

2.2

3.1

3.1

4.45

4.45

6.4

6.4

Mass

[kg] [kg/m]

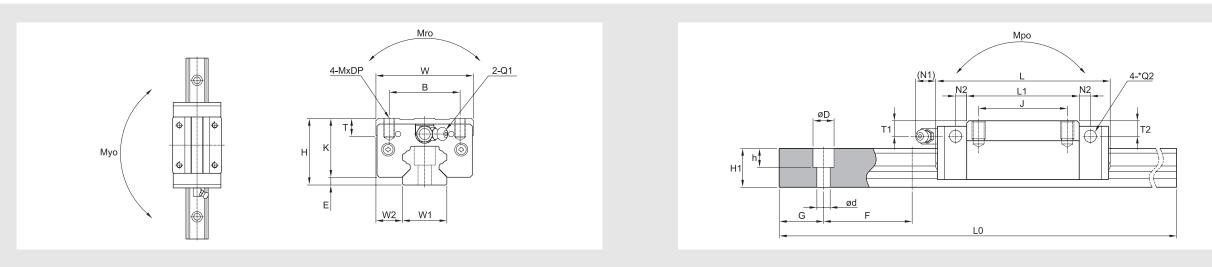
Block

0.45

0.52

0.61

0.81


1.07

1.43

1.58

### SPG / SPS Spacer Linear Rail System

### SPG-SL/SL



W1

20

20

23

23

28

28

34

34

W2

12

12

12.5

12.5

16

16

18

18

H1

17.5

17.5

21.8

21.8

25

25

29

29

F

60

60

60

60

80

80

80

80

Rail dimension

d

6

6

7

7

9

9

9

9

Bolt hole

D

9.5

9.5

11

11

14

14

14

14

h

8.5

8.5

9

9

12

12

12

12

|           | Mou | nting | dimer | nsion |    |         |         |     |       | Bloo  | ck dim | iensio | ns |      |         |         |      |
|-----------|-----|-------|-------|-------|----|---------|---------|-----|-------|-------|--------|--------|----|------|---------|---------|------|
| Model     | н   | W     |       | Е     | Мс | ounting | ) tap h | ole | L1    | T±1   | К      |        |    | Grea | se fitt | ing     |      |
|           | ''  | vv    | L     | E     | В  | J       | М       | DP  |       | 1 1 1 |        | T1     | N1 | T2   | N2      | Q1      | *Q2  |
| SPG20 SL  | 30  | 44    | 77.2  | 3.5   | 32 | 36      | M5      | 8   | 50.8  | 8     | 26.5   | 8      | 12 | 7    | 5       | M6x0.75 | Ø5.5 |
| SPG20 SLL | 30  | 44    | 93.2  | 3.5   | 32 | 50      | M5      | 8   | 66.8  | 8     | 26.5   | 8      | 12 | 7    | 5       | M6x0.75 | Ø5.5 |
| SPG25 SL  | 40  | 48    | 86.9  | 6.5   | 35 | 35      | M6      | 8   | 59.5  | 12    | 33.5   | 12     | 12 | 12.2 | 5.5     | M6x0.75 | Ø5.5 |
| SPG25 SLL | 40  | 48    | 106.4 | 6.5   | 35 | 50      | M6      | 8   | 79    | 12    | 33.5   | 12     | 12 | 12.2 | 5.5     | M6x0.75 | Ø5.5 |
| SPG30 SL  | 45  | 60    | 100   | 7     | 40 | 40      | M8      | 10  | 70.4  | 12    | 38     | 12     | 12 | 11.5 | 5.5     | M6x0.75 | Ø5.5 |
| SPG30 SLL | 45  | 60    | 122.5 | 7     | 40 | 60      | M8      | 10  | 92.9  | 12    | 38     | 12     | 12 | 11.5 | 5.5     | M6x0.75 | Ø5.5 |
| SPG35 SL  | 55  | 70    | 112.6 | 7.5   | 50 | 50      | M8      | 12  | 80.4  | 15    | 47.5   | 15     | 12 | 15   | 6       | M6x0.75 | Ø5.5 |
| SPG35 SLL | 55  | 70    | 138.1 | 7.5   | 50 | 72      | M8      | 12  | 105.9 | 15    | 47.5   | 15     | 12 | 15   | 6       | M6x0.75 | Ø5.5 |

• C (Basic dynamic load rating), Co (Basic static load rating)

\*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.

### Linear Rail System

SPG / SPS Spacer Linear Rail System

Permissible static

moment

[kN • m]

0.18

0.31

0.31

0.49

0.49

0.79

0.74

1.3

Mpo Myo

0.18

0.31

0.3

0.48

0.48

0.78

0.72

1.28

Basic load rating

[kN]

Co

25

36.5

39.2

48

53.8

67.9

68.6

90.4

Mro

0.22

0.28

0.35

0.43

0.59

0.74

0.94

1.24

С

14.2

16.9

20.9

24.6

29.2

35.3

38.8

46

Max

langth

of rail

L0

4000

4000

4000

4000

4000

4000

4000

4000

G

20

20

20

20

20

20

20

20

(Unit : mm)

Rail

2.2

2.2

3.1

3.1

4.45

4.45

6.4

6.4

Mass

[kg] [kg/m]

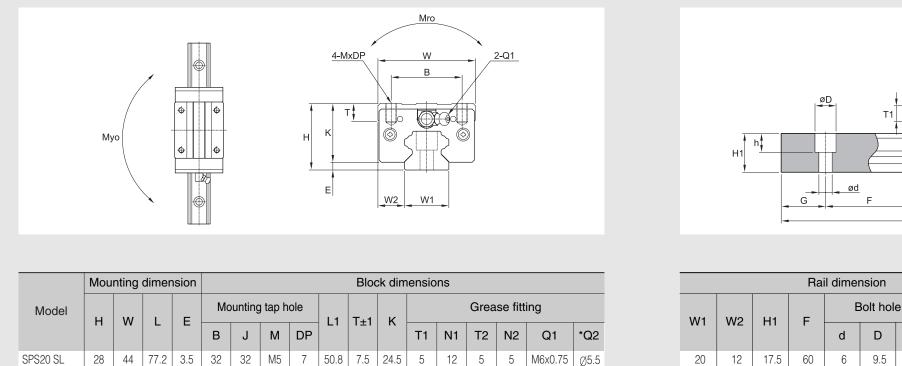
Block

0.34

0.44

0.57

0.74


0.92

1.22

1.57

### SPG / SPS Spacer Linear Rail System

### SPS-SL, HL/SLL, HL



|           | Mounting dimension Block dimensions |    |       |     |    |         |         |     |       |       |      |     |    |      |          |         |      |
|-----------|-------------------------------------|----|-------|-----|----|---------|---------|-----|-------|-------|------|-----|----|------|----------|---------|------|
| Model     | н                                   | W  | L     | Е   | Мс | ounting | g tap h | ole | L1    | T±1   | к    |     |    | Grea | ise fitt | ing     |      |
|           |                                     | vv | L     | E   | В  | J       | м       | DP  |       | 1 1 1 |      | T1  | N1 | T2   | N2       | Q1      | *Q2  |
| SPS20 SL  | 28                                  | 44 | 77.2  | 3.5 | 32 | 32      | M5      | 7   | 50.8  | 7.5   | 24.5 | 5   | 12 | 5    | 5        | M6x0.75 | Ø5.5 |
| SPS20 SLL | 28                                  | 44 | 93.2  | 3.5 | 32 | 50      | M5      | 7   | 66.8  | 7.5   | 24.5 | 5   | 12 | 5    | 5        | M6x0.75 | Ø5.5 |
| SPS25 SL  | 33                                  | 48 | 86.9  | 6.5 | 35 | 35      | M6      | 6   | 59.5  | 8     | 26.5 | 5.2 | 12 | 5.1  | 5.5      | M6x0.75 | Ø5.5 |
| SPS25 SLL | 33                                  | 48 | 106.4 | 6.5 | 35 | 50      | M6      | 6   | 79    | 8     | 26.5 | 5.2 | 12 | 5.1  | 5.5      | M6x0.75 | Ø5.5 |
| SPS25 HL  | 36                                  | 48 | 86.9  | 6.5 | 35 | 35      | M6      | 8   | 59.5  | 11    | 29.5 | 8.2 | 12 | 8.1  | 5.5      | M6x0.75 | Ø5.5 |
| SPS25 HLL | 36                                  | 48 | 106.4 | 6.5 | 35 | 50      | M6      | 8   | 79    | 11    | 29.5 | 8.2 | 12 | 8.1  | 5.5      | M6x0.75 | Ø5.5 |
| SPS30 SL  | 42                                  | 60 | 100   | 7   | 40 | 40      | M8      | 10  | 70.4  | 12    | 35   | 8.5 | 12 | 8.5  | 5.5      | M6x0.75 | Ø5.5 |
| SPS30 SLL | 42                                  | 60 | 122.5 | 7   | 40 | 60      | M8      | 10  | 92.9  | 12    | 35   | 8.5 | 12 | 8.5  | 5.5      | M6x0.75 | Ø5.5 |
| SPS35 SL  | 48                                  | 70 | 112.6 | 7.5 | 50 | 50      | M8      | 12  | 80.4  | 15    | 40.5 | 8   | 12 | 8    | 6        | M6x0.75 | Ø5.5 |
| SPS35 SLL | 48                                  | 70 | 138.1 | 7.5 | 50 | 72      | M8      | 12  | 105.9 | 15    | 40.5 | 8   | 12 | 8    | 6        | M6x0.75 | Ø5.5 |

① C (Basic dynamic load rating), Co (Basic static load rating)

\*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.

### Linear Rail System

SPG / SPS Spacer Linear Rail System

4-\*Q2

T2

Permissible static

moment

[kN • m]

0.18

0.31

0.31

0.49

0.31

0.49

0.49

0.79

0.74

1.3

Mpo Myo

0.18

0.31

0.3

0.48

0.3

0.48

0.48

0.78

0.72

1.28

N2

Мро

Basic load

rating

[kN]

Co

25

36.5

39.2

48

39.2

48

53.8

67.9

68.6

90.4

Mro

0.22

0.28

0.35

0.43

0.35

0.43

0.59

0.74

0.94

1.24

С

14.2

16.9

20.9

24.6

20.9

24.6

29.2

35.3

38.8

46

<u>(N1)</u>

L0

Max

langth

of rail

L0

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

G

20

20

20

20

20

20

20

20

20

20

h

8.5

8.5

9

9

9

9

12

12

12

12

17.5

21.8

21.8

21.8

21.8

25

25

29

29

60

60

60

60

60

80

80

80

80

6

7

7

7

7

9

9

9

9

9.5

11

11

11

11

14

14

14

14

20

23

23

23

23

28

28

34

34

12

12.5

12.5

12.5

12.5

16

16

18

18

(Unit : mm)

Rail

2.2

2.2

3.1

3.1

3.1

3.1

4.45

4.45

6.4

6.4

Mass

[kg] [kg/m]

Block

0.31

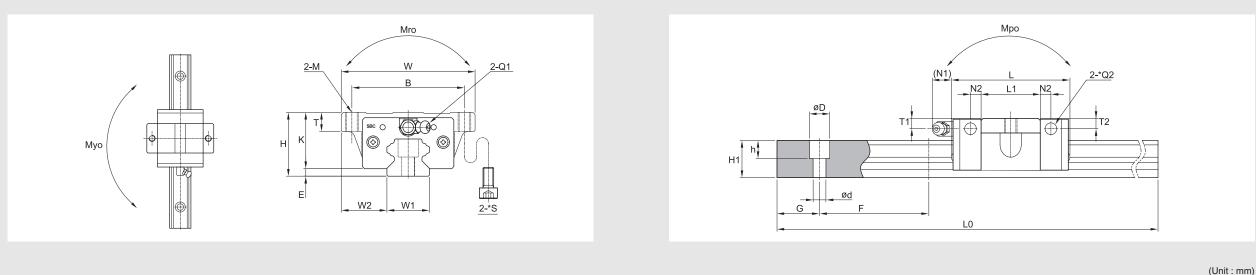
0.39

0.42

0.54

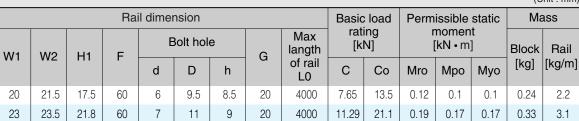
0.49

0.62


0.86

1.10

1.27

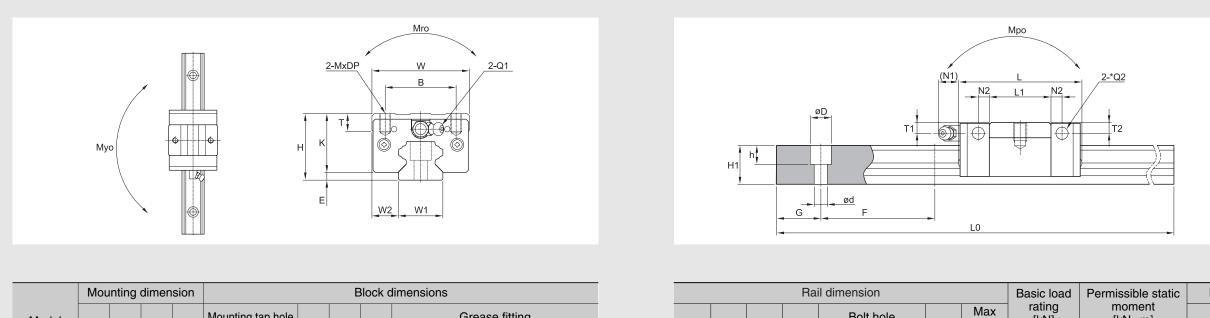

### SPG / SPS Spacer Linear Rail System

### SPS-FV



|  |          | Mou | Inting | dimen | sion |      | Block dimensions |        |      |     |      |     |    |      |          |         |      |  |
|--|----------|-----|--------|-------|------|------|------------------|--------|------|-----|------|-----|----|------|----------|---------|------|--|
|  | Model    | н   | w      |       | F    | Moun | ting ta          | p hole | L1   | T±1 | к    |     |    | Grea | se fitti | ng      |      |  |
|  |          | ••  |        |       | В    | М    | *S               |        |      |     | T1   | N1  | T2 | N2   | Q1       | *Q2     |      |  |
|  | SPS20 FV | 28  | 63     | 54.2  | 3.5  | 53   | M6               | M5     | 27.8 | 7   | 24.5 | 5   | 12 | 5    | 5        | M6x0.75 | Ø5.5 |  |
|  | SPS25 FV | 33  | 70     | 62.6  | 6.5  | 57   | M8               | M6     | 35.2 | 7   | 26.5 | 5.2 | 12 | 5.1  | 5.5      | M6x0.75 | Ø5.5 |  |

- C (Basic dynamic load rating), Co (Basic static load rating)
- S: Bolt size for bottom mounting type of block.
- O \*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves.




Linear Rail System

SPG / SPS Spacer Linear Rail System

### SPG / SPS Spacer Linear Rail System

### SPS-SV



| Mod     | el | н  | w  |      | F   | Moun | ting ta | p hole | 1.1  | T±1   | к    | Grea |    |     | ase fitting |         |      |  |  |  |
|---------|----|----|----|------|-----|------|---------|--------|------|-------|------|------|----|-----|-------------|---------|------|--|--|--|
|         |    |    | vv |      | L   | В    | М       | DP     | L1   | 1 1 1 |      | T1   | N1 | T2  | N2          | Q1      | *Q2  |  |  |  |
| SPS20 S | SV | 28 | 44 | 54.2 | 3.5 | 32   | M5      | 7      | 27.8 | 7.5   | 24.5 | 5    | 12 | 5   | 5           | M6x0.75 | Ø5.5 |  |  |  |
| SPS25 S | SV | 33 | 48 | 62.6 | 6.5 | 35   | M6      | 6      | 35.2 | 8     | 26.5 | 5.2  | 12 | 5.1 | 5.5         | M6x0.75 | Ø5.5 |  |  |  |

C (Basic dynamic load rating), Co (Basic static load rating)

\*Q2: The hole of side grease nipple is not made to prevent a foreign substance from going into inside. When you order the side grease nipple, we build it by ourselves. Linear Rail System

SPG / SPS Spacer Linear Rail System

### Miniature Linear Rail System

**Miniature Linear Rail System** 

(a) / 121

### Rail Block End plate End seal Block guide Ball Retainer

### [Feature of structure]

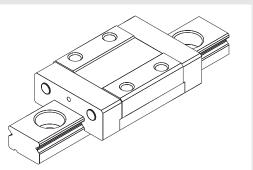
SBC Miniature linear rail system utilizes two rows of ball bearings which make four point contact between the rail and block. This design achieves both a slim profile and high rigidity. The special engineered plastic is used for the end-plate allows for long life ball recirculation.

### [Ball retention]

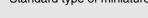
To retain the ball bearings inside the block, a wire retainer is used between the block and rail. With this retainer, the block can be carefully emoved from the rail without loosing ball bearings.

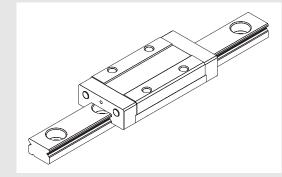
### [Low noise]

With a ball return path made from engineered plastic, contact noise between the balls and block wall is removed, therefore achieving low noise.


### [Smooth movement]

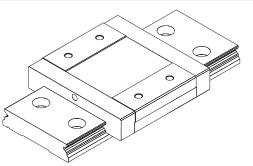
The steel block, ball returns, and end caps are carefully engineered to act as a single path enabling smooth operation in both horizontal and vertical applications.


### [Excellent corrosion resistance]


Both the rail and block are made from stainless steel for excellent corrosion resistance. This is ideal for semiconductor, life science, LCD, or other clean room production environments.

### Types and features



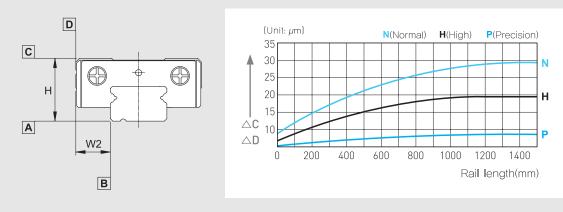

[SBM type] Standard type of miniature.





### [SBML type]

Block length is modified type to increase load capacity.




### [SBMW type]

The width and length of linear block and rail are modified to increase load ratings and permissible moments.

### Miniature Linear Rail System

### Accuracy

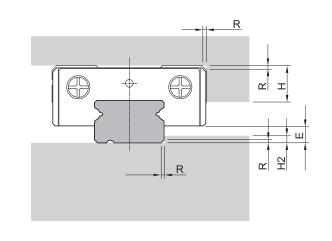


|                                                                       |               |               | (Unit : mm)    |
|-----------------------------------------------------------------------|---------------|---------------|----------------|
| Item                                                                  | N             | н             | Р              |
| Tolerance for the height H                                            | ±0.04         | <u>+</u> 0.02 | ±0.01          |
| Tolerance for the rail-to-block lateral distance W2                   | <u>+</u> 0.04 | ±0.025        | <u>+</u> 0.015 |
| Tolerance for the height H difference among blocks                    | 0.03          | 0.015         | 0.007          |
| Tolerance for rail-to-block lateral distance W2 distance among blocks | 0.03          | 0.015         | 0.007          |
| Running parallelism of surface <b>C</b> with surface <b>A</b>         |               | ∆C            |                |
| Running parallelism of surface D with surface B                       |               | ∆D            |                |
|                                                                       |               |               |                |

• N : Normal • H : High • P : Precision

### [Preload]

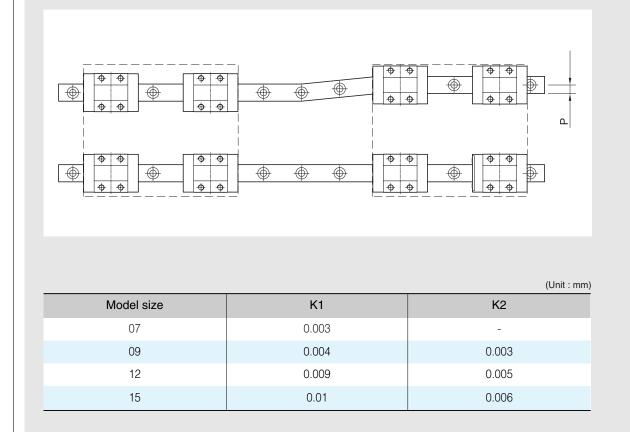
[Grease]


| Reference                                 | Volume of preload |
|-------------------------------------------|-------------------|
| K1                                        | Max. 0.02C        |
| K2                                        | 0.04 ~ 0.06C      |
| <ul> <li>C(kN) : Basic dynamic</li> </ul> | load rating       |

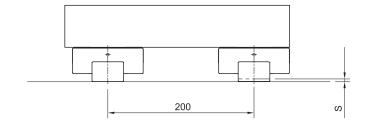
| Seal resistanc | e]       | (Unit : N) |
|----------------|----------|------------|
| Reference      | SBM/SBML | SBMW       |
| 07             | 0.08     | -          |
| 09             | 0.2      | 0.8        |
| 12             | 0.59     | 1.1        |
| 15             | 1.18     | 1.3        |

SBM(L), SBMW Uses two types of grease according to working conditions. For details, please see the technical data for grease.

### Linear Rail System


### Shoulder height and fillet radius R




| Model number | Fillet radius R | Shoulders height<br>H1 | Shoulders height<br>H2 | E   |
|--------------|-----------------|------------------------|------------------------|-----|
| SBM07        | 0.2             | 3                      | 1.2                    | 1.5 |
| SBM(L)09     | 0.3             | 3                      | 1.9                    | 2.2 |
| SBM(L)12     | 0.3             | 4                      | 2                      | 3   |
| SBM(L)15     | 0.3             | 5                      | 2.5                    | 4   |
| SBMW09       | 0.3             | 3                      | 3.4                    | 3.7 |
| SBMW12       | 0.3             | 4                      | 3.7                    | 4   |
| SBMW15       | 0.3             | 5                      | 3.4                    | 3.7 |

### Miniature Linear Rail System

### Permissible tolerance (P) of parallelism



### Permissible tolerance (S) of two level offset



(Unit : mm)

Linear Rail System

Miniature Linear Rail System

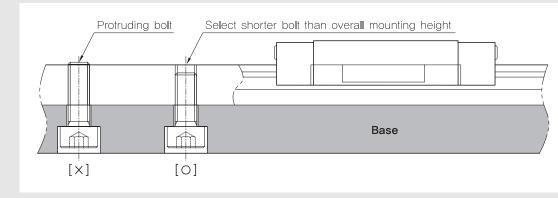
| Model size | K1    | K2    |
|------------|-------|-------|
| 07         | 0.025 | -     |
| 09         | 0.035 | 0.006 |
| 12         | 0.05  | 0.012 |
| 15         | 0.06  | 0.02  |

### Miniature Linear Rail System

Miniature Linear Rail System

Linear Rail System

| Ordering example                                                                                            |                                                               | Standard and         | Max lengt  | h             |                |               |             |            |            |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------|------------|---------------|----------------|---------------|-------------|------------|------------|
| Seal resistance]                                                                                            | [Ordering example for rail]                                   |                      |            |               |                |               |             |            |            |
| <u>SBM09</u> – <u>K1</u><br>[1] [2]                                                                         | $\frac{\text{SBM09}}{[1]} - \frac{600L}{[2]} - \frac{B}{[3]}$ |                      |            |               |                |               |             |            |            |
| [1] Model : SBM, SBML, SBMW<br>[2] Preload : K1, K2                                                         | [1] Model : SBM, SBMW<br>[2] Rail length                      |                      | G          | F             |                | LO            |             |            | G          |
| [_]                                                                                                         | [3] Through tap hole rail : Standard (No symbol)              | Model number         | SBM07      | SBM09         | SBM12          | SBM15         | SBMW09      | SBMW12     | (Unit : mm |
|                                                                                                             | available.                                                    |                      | 40         | 55            | 70             | 70            | 50          | 70         | 110        |
|                                                                                                             |                                                               |                      | 55         | 75            | 95             | 110           | 80          | 110        | 150        |
|                                                                                                             |                                                               |                      | 70<br>85   | 95<br>115     | 120<br>145     | 150<br>190    | 110<br>140  | 150        | 190        |
| ordering for assembled rail and block]                                                                      |                                                               |                      | 100        | 135           | 145            | 230           | 140         | 190<br>230 | 230<br>270 |
|                                                                                                             |                                                               |                      | 115        | 155           | 195            | 270           | 200         | 270        | 350        |
|                                                                                                             |                                                               |                      | 130        | 175           | 220            | 310           | 260         | 350        | 430        |
| $\frac{\text{SBM09}}{[1]} - \frac{2}{[2]} - \frac{\text{K1}}{[3]} - \frac{600}{[4]} - \frac{\text{N}}{[5]}$ | – R – B – II                                                  |                      | 160        | 215           | 245            | 350           | 320         | 430        | 510        |
| [1] [2] [3] [4] [5]                                                                                         | [6] [7] [8]                                                   |                      | 190        | 255           | 270            | 390           | 380         | 510        | 590        |
|                                                                                                             |                                                               |                      | 220        | 295           | 320            | 430           | 440         | 590        | 670        |
|                                                                                                             |                                                               |                      | 250<br>280 | 355<br>415    | 395<br>470     | 470<br>590    | 500<br>560  | 670<br>750 | 750<br>830 |
| [1] Model : SBM, SBML, SBMW                                                                                 |                                                               | Standard             | 200        | 415           | 545            | 670           | 620         | 830        | 910        |
|                                                                                                             |                                                               | length               |            | 535           | 620            | 830           | 680         | 910        | 990        |
| [2] Block quantity on rail                                                                                  |                                                               |                      |            | 615           | 695            | 910           | 740         | 990        | 1070       |
| [3] Preload : K1, K2                                                                                        |                                                               |                      |            | 675           | 770            | 990           | 800         | 1070       | 1190       |
| [4] Rail length                                                                                             |                                                               |                      |            | 715           | 870            | 1070          | 860         | 1190       |            |
| [5] Accuracy : N, H, P                                                                                      |                                                               |                      |            | 735           | 970            | 1190          | 920         |            |            |
|                                                                                                             |                                                               |                      |            | 795<br>875    | 1020<br>1195   |               | 980<br>1040 |            |            |
| [6] Surface treatment                                                                                       |                                                               |                      |            | 955           | 1130           |               | 11040       |            |            |
| [7] Through tap hole rail : Standard (No symbolic                                                           | DI)                                                           |                      |            | 995           |                |               | 1190        |            |            |
| [8] Rail : Number of rails per axis 1=I, 2=II 4                                                             | +IV etc.                                                      |                      |            | 1035          |                |               |             |            |            |
| * We recommend block and rail assembled to                                                                  | o be ordered where high-precision and high-                   |                      |            | 1115          |                |               |             |            |            |
| rigidity are required.                                                                                      |                                                               |                      |            | 1195          |                |               |             |            |            |
| * For surface treatment, please mark accordi                                                                | ing to each surface treatment symbol.                         | F                    | 15         | 20            | 25             | 40            | 30          | 40         | 40         |
| * If special G dimension is required, please n                                                              |                                                               | G<br>L0(Max length)  | 5<br>490   | 7.5<br>1195   | 10<br>1195     | 15<br>1190    | 10<br>1190  | 15<br>1190 | 15<br>1190 |
| « in special of dimension is required, please in                                                            |                                                               | * SBM, SBML use s    |            | 1190          | 1190           | 1190          | 1190        | 1190       | 1190       |
|                                                                                                             |                                                               | * If special G dimen |            | ed, please ma | urk when you j | place an orde | er.         |            |            |

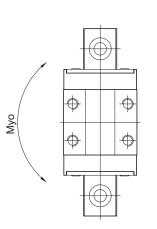

### Miniature Linear Rail System

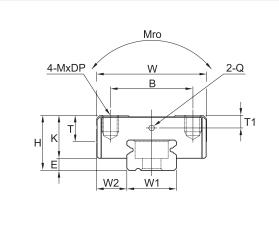
Miniature through tap hole rail

### S H1 W1 G G L0 H1[ W3 W1 (Unit : mm) L0 Mass W1 Model W3 H1 S G F (Max length) (kg/m) SBM 07-B 7 4.7 M3x0.5P 5 15 490 0.22 -SBM 09-B 9 5.5 M4x0.7P 7.5 20 1195 0.32 -SBM 12-B 12 7.5 M4x0.7P 10 25 1195 0.32 -SBM 15-B 15 9.5 M4x0.7P 15 40 1190 0.59 -SBMW 09-B 18 7.5 M4x0.7P 10 30 1190 0.99 -SBMW 12-B 24 8.5 M5x0.8P 15 40 1190 1.42 -SBMW 15-B M5x0.8P 42 23 9.5 15 40 1190 2.93

### Caution for mounting miniature through tap hole rail

If the mounting bolt is longer than overall mounting height, the bolt can protrude which can cause tinterference with the seal or bearing itself. Therefore, make sure the appropriate bolt selection.





Linear Rail System

Miniature Linear Rail System

### Miniature Linear Rail System

### SBM/SBML





|         | Mo | ounting | dimensi | ion | Block dimensions |          |            |     |      |     |     |        |         |  |  |  |
|---------|----|---------|---------|-----|------------------|----------|------------|-----|------|-----|-----|--------|---------|--|--|--|
| Model   | н  | W       |         | E   | 1                | Mounting | g tap hole | 9   | L1   | т   | К   | Greasi | ng hole |  |  |  |
|         |    | vv      |         |     | В                | J        | М          | DP  |      | 1   | , r | T1     | Q       |  |  |  |
| SBM 07  | 8  | 17      | 22.8    | 1.5 | 12               | 8        | M2         | 2.5 | 13.4 | 3.6 | 6.5 | 1.6    | Ø1      |  |  |  |
| SBM 09  | 10 | 20      | 30.4    | 2.2 | 15               | 10       | M3         | 3   | 17.8 | 5   | 7.8 | 2.3    | Ø1      |  |  |  |
| SBML 09 | 10 | 20      | 40.8    | 2.2 | 15               | 16       | M3         | 3   | 28.2 | 5   | 7.8 | 2.3    | Ø1      |  |  |  |
| SBM 12  | 13 | 27      | 35      | 3   | 20               | 15       | M3         | 3.5 | 19.8 | 6   | 10  | 2.8    | Ø1      |  |  |  |
| SBML 12 | 13 | 27      | 47.6    | 3   | 20               | 20       | M3         | 3.5 | 32.4 | 6   | 10  | 2.8    | Ø1      |  |  |  |
| SBM 15  | 16 | 32      | 43      | 4   | 25               | 20       | M3         | 4   | 25.4 | 7   | 12  | 3.1    | Ø1      |  |  |  |
| SBML 15 | 16 | 32      | 58.8    | 4   | 25               | 25       | M3         | 4   | 41.2 | 7   | 12  | 3.1    | Ø1      |  |  |  |

• C (Basic dynamic load rating), Co (Basic static load rating)

### Linear Rail System

Permissible static

moment

[N•m]

Mro Mpo Myo

2.46

6.01

16.22

12.13

36.86

23.81

96.75 66.44

2.46

6.01

16.22

12.13

36.86

23.81

66.44

Мро

L1

.1

Basic load

rating

[kN]

Co

1.47

2.7

4.6

4.9

9.1

7.5

12.9

5.15

12.15

20.7

29.4

54.6

56.25

С

0.9

1.4

2.1

3.3

5

4.9

7.1

L0

Max

langth

of rail

L0

490

1195

1195

1195

1195

1190

1190

G

5

7.5

7.5

10

10

15

15

øD

G

Rail dimension

d

2.4

4

4

4

4

4

4

Bolt hole

D

4.2

6

6

6

6

6

6

h

2.3

3.3

3.3

4.5

4.5

4.5

4.5

H1 h

W1

7

9

9

12

12

15

15

W2

5

5.5

5.5

7.5

7.5

8.5

8.5

H1

4.7

5.5

5.5

7.5

7.5

9.5

9.5

F

15

20

20

25

25

40

40



(Unit : mm)

Rail

0.22

0.32

0.32

0.59

0.59

0.99

0.99

Mass

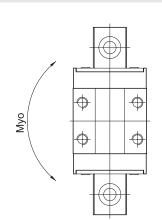
[kg] [kg/m]

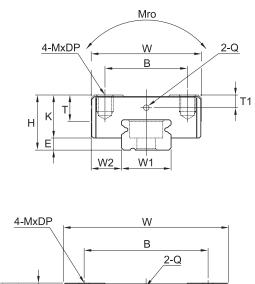
Block

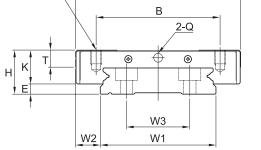
0.006

0.013

0.023

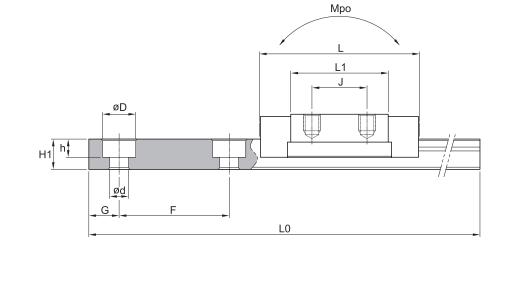

0.029


0.043


0.052

### Miniature Linear Rail System

### SBMW








|         | Mo | ounting | dimensi               | ion |    |    |    | Bloo | ck dimensions |     |      |        |         |  |  |  |
|---------|----|---------|-----------------------|-----|----|----|----|------|---------------|-----|------|--------|---------|--|--|--|
| Model   | н  | w       | L E Mounting tap hole |     |    |    |    | Ð    | L1            | т   | к    | Greasi | ng hole |  |  |  |
|         |    | vv      |                       |     | В  | J  | М  | DP   |               | 1   | ĸ    | T1     | Q       |  |  |  |
| SBMW 09 | 12 | 30      | 42.3                  | 3.7 | 21 | 12 | M3 | 3    | 27            | 4.5 | 8.3  | 2      | Ø1.4    |  |  |  |
| SBMW 12 | 14 | 40      | 48.4                  | 4   | 28 | 15 | M3 | 3.5  | 30.9          | 5   | 10   | 2.4    | Ø1.6    |  |  |  |
| SBMW 15 | 16 | 60      | 57.5                  | 3.7 | 45 | 20 | M4 | 4.5  | 38.9          | 6.2 | 12.3 | 2.8    | Ø3.2    |  |  |  |

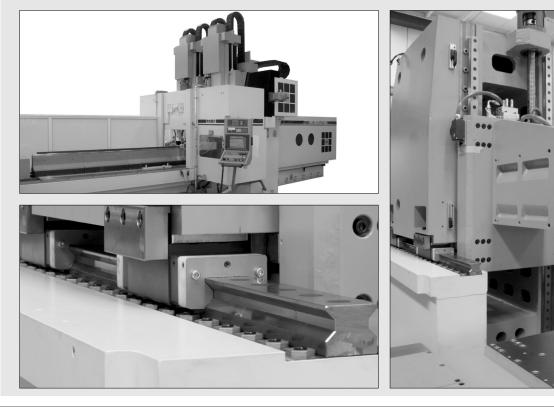
C (Basic dynamic load rating), Co (Basic static load rating)



|      |     |     |     |     |          |          |     |    |               |                |      |         |         |        | (U    | nit : mm) |  |
|------|-----|-----|-----|-----|----------|----------|-----|----|---------------|----------------|------|---------|---------|--------|-------|-----------|--|
|      |     |     |     | Rai | il dimer | nsion    |     |    |               | Basic load     |      | Perm    | issible | static | Mass  |           |  |
| W1   | W2  | H1  | W3  | F   | E        | Bolt hol | е   | G  | Max<br>langth | rating<br>[kN] |      | [N • m] |         | t      | Block | Rail      |  |
| VVIV | **2 | 111 | ••• |     | d        | D        | h   | u  | of rail<br>L0 | С              | Со   | Mro     | Мро     | Муо    | [kg]  | [kg/m]    |  |
| 18   | 6   | 7.5 | -   | 30  | 3.5      | 6        | 4.5 | 10 | 1190          | 2.45           | 3.92 | 35.96   | 16.26   | 16.26  | 0.03  | 0.99      |  |
| 24   | 8   | 8.5 | -   | 40  | 4.5      | 8        | 4.5 | 15 | 1190          | 4.02           | 6.08 | 47.62   | 17.15   | 18.62  | 0.03  | 1.42      |  |
| 42   | 9   | 9.5 | 23  | 40  | 4.5      | 8        | 4.5 | 15 | 1190          | 6.66           | 9.80 | 136.9   | 35.28   | 38.22  | 0.12  | 2.93      |  |

### SBC-ROSA Roller Linear Rail System

### SBC-ROSA Roller Linear Rail System


**Linear Rail System** 





### Advanced technical solutions for high-tech industries

SBC-ROSA roller linear rail system is manufactured by technical cooperation with SBC-ROSA. This roller linear rail system is suitable for high loads, great stiffness and high reliability, especially for machine tools.



### The features of SBC-ROSA roller linear rail system

MG roller linear rail system of SBC-ROSA is an advanced technical solution for high-tech industries and is achieved the high loads, high stiffness and high reliability.

### (1) Extended life time

### 2 times longer life time than steel ball

| In case | of steel ball | : 50km  |
|---------|---------------|---------|
| In case | of roller     | : 100km |

### (2) Designed with FEM analysis

### [Streamlined roller slide ways]

- The geometries and the directions of the roller slide ways were calculated by means of FEM according to each individual preload, thus assuring the best performances of load capacities and obtainable accuracies all the time.
   [Roller]
- The rollers are manufactured according to the most recent knowledge about rolling element-related theory, thus assuring high stiffness, maximum load capacity and long life.

### (3) Innovative Lubrication System

- The introduction of the lubricant into the front head is controlled by means of check valves. These valves are installed on both sides of the carriage slide ways and prevent the lubricant from flowing back while sliding. With minimum quantities of lubricant, independently from the assembly position, the perfect distribution over the slide ways will be assured.
- Each front head of the carriage has 4 lubrication inputs: two side inputs, one front input and one on the other side

### (4) Sliding Uniformity

• Thanks to streamlined radiuses for internal recirculation systems, pulsation phenomena are reduced to the minimum, thus offering a low resistance to the forward movement.

### (5) Innovative Design

- The accurate study of all plastic elements in the carriage enabled reduced the interferences in the internal recirculation system, thus increasing relevant reliability and life.
- The slide ways are well protected by means of cross-wise and longitudinal gaskets that assure good sealing (also in contaminated environments).

**DIN 631** 

C/P=3

C/P=2

3893 km

1050 km

120 m/min.

2 m

10 m/s<sup>2</sup>

Oil ISO VG 220

SBC-ROSA Roller Linear Rail System

Test conditions for the

linear roller bearing

according to the standards

Load coefficient MG35

Load coefficient

MG25/45/55

Endurance with C/P = 3

Endurance with C/P = 2

Test speed

Maximum stroke

Acceleration

Lubricant

### Linear Rail System

### SBC-ROSA Roller Linear Rail System

### 1. Calculating the applied loads

To calculate the applied loads, please see the page (a)/10 in the linear rail system.

### 2. Life Calculation

### [Calculation of nominal life]

The equation of nominal life is shown as below.

$$L = \left(\frac{f_{H} \cdot f_{T} \cdot f_{C}}{f_{W}} \cdot \frac{C}{P_{C}}\right)^{\frac{10}{3}} X \ 100$$

\* Please see the page (a)/20 for fH(hardness factor),fT(temperature factor), fc(contact factor) and fw(load factor).

### [Life calculation]

| Ln = - | L X 10 <sup>6</sup> |  |
|--------|---------------------|--|
| Ln — - | 2 X n1 X &s X 60    |  |

- L (km) : Nominal life • Pc(N) : Calculated load
- C (N) : Basic dynamic load rating
- : Hardness factor **о f**н
  - : Temperature factor
- fc : Contact factor
- fw : Load factor

• f⊤

- Lh (h) : Hours of nominal life
- L (km) : Nominal life • ls (N) : Stroke
- n1 (min<sup>-1</sup>) : Reciprocation cycles per minute

### 3. Calculation of the static safety coefficient

| Conditions of use                                                | Lower limit of Fs |
|------------------------------------------------------------------|-------------------|
| Maximum stiffness, great impact stresses and vibrations          | ≥6                |
| High stiffness, variable and average impact stresses, vibrations | ≥4                |
| Uniform stresses, light vibrations                               | ≥3                |

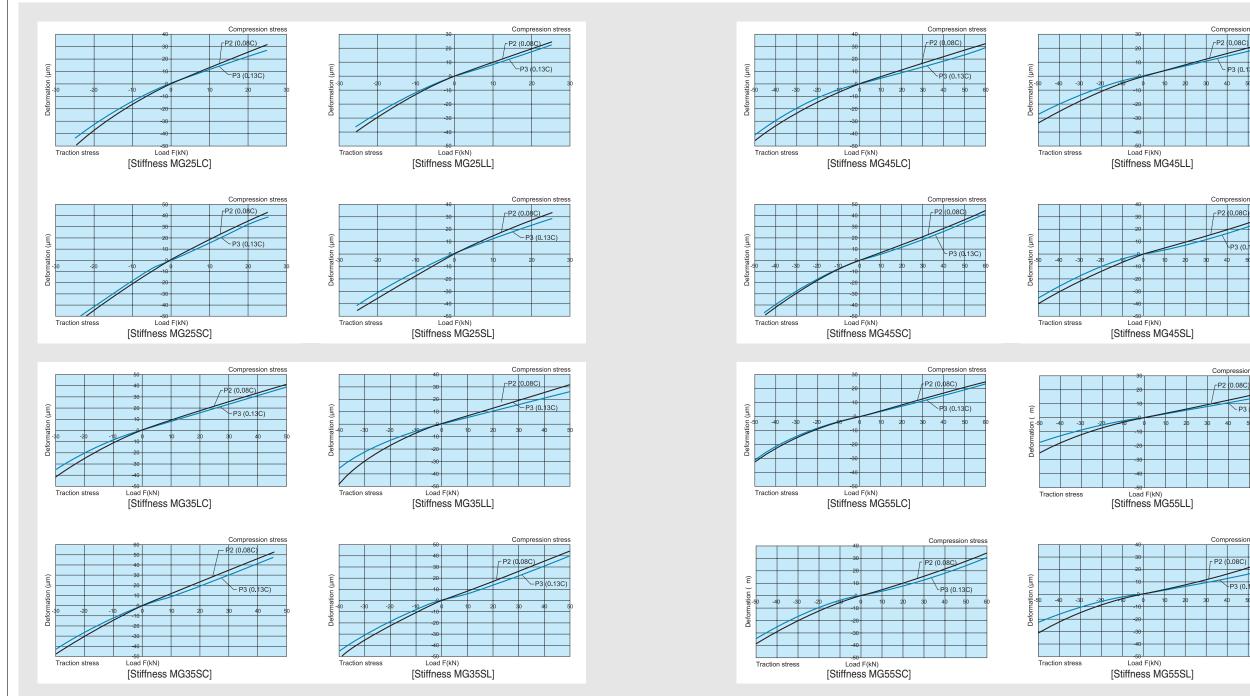
| $f_s = \frac{C}{P_r}$ | conax                          |
|-----------------------|--------------------------------|
| • fs                  | : Static safety factor         |
| • Co                  | : Basic static load rating (N) |

 Pmax : Maximum load (N)

### 4. Durability test

### [Test conditions]






| According to the DIN 631 standards, endurance is considered as to be achieved if the surfaces of the |  |
|------------------------------------------------------------------------------------------------------|--|
| slide ways have no Pitting > 0.3 x roller diameter.                                                  |  |

All tests concerning the MG35 model were interrupted after a stroke equaling 4260 and 4870 km. Despite the long distance in kilometers that was covered, we de detected the absence of damage to the slide ways.

### SBC-ROSA Roller Linear Rail System

### 5. Stiffness diagram



### **Linear Rail System**

Compression stress

P3 (0.13C)

Compression stress

P3 (0.13C)

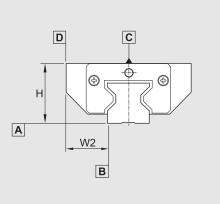
Compression stres

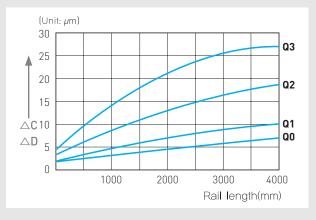
Compression stress

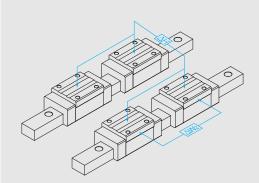
P3 (0.13C)

P2 (0.08C)

- P3 (0.13C)


\_P2 (0.08C)


rP2 (0.08C)


SBC-ROSA Roller Linear Rail System

### SBC-ROSA Roller Linear Rail System

### 6. Accuracy classes







Measuring dimension difference H and W2 between the carriages of the same guide
 △W2 (Dimension difference W2 between the carriages of the same guide): measuring the center of block side surface(reference surface
 △ H (Dimension difference H between the carriages of the same guide): measuring the center of block top

| Accuracy class                                                  | QU    | Q2    | G      | QU             |
|-----------------------------------------------------------------|-------|-------|--------|----------------|
| Tolerance on H assembly<br>dimension                            | ±0.03 | ±0.02 | ±0.01  | ±0.005         |
| Tolerance on W2 assembly<br>dimension                           | ±0.02 | ±0.02 | ±0.007 | <u>+</u> 0.005 |
| Dimension difference H between the carriages of the same guide  | 0.015 | 0.007 | 0.005  | 0.003          |
| Dimension difference W2 between the carriages of the same guide | 0.015 | 0.007 | 0.005  | 0.003          |
| Running parallelism of surface C against surface A              |       | Δ     | C      |                |
| Running parallelism of surface D against surface B              |       | Δ     | Ď      |                |
|                                                                 | 00 0  |       |        |                |

Accuracy class

(Unit : mm)

Q3 Q2 Q1 Q0

Q3 : High-accuracy grade
Q1 : Super precision grade
Q0 : Ultra precision grade

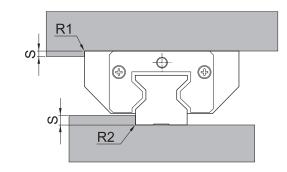
### 7. Preload classes

| Preload calss | Preload |
|---------------|---------|
| P2 (Light)    | 0.08C   |
| P3 (Heavy)    | 0.13C   |

• C(N) : Basic dynamic load rating

| 8. Shoulder height and fillet radius R |  |
|----------------------------------------|--|
|                                        |  |

Model


25

35

45

55

65



Fillet radius R1

0.8

0.8

0.8

1.2

1.5

S

5

6

8

10

10

(Unit : mm)

Fillet radius R2

0.8

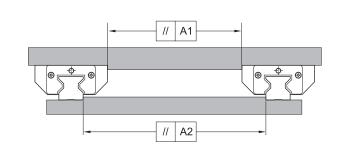
0.8

0.8

1.0

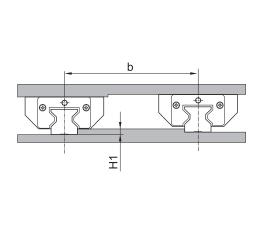
1.5

# a Linear Rail System


Linear Rail System

a/140

### Linear Rail System


### SBC-ROSA Roller Linear Rail System

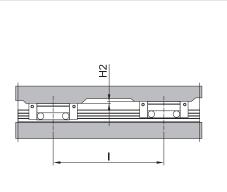
### 9. Parallelism tolerance for shoulder surface



|      |            | (Unit : mm) |
|------|------------|-------------|
| Size | P2 preload | P3 preload  |
| 25   | 0.008      | 0.005       |
| 35   | 0.012      | 0.008       |
| 45   | 0.014      | 0.009       |
| 55   | 0.017      | 0.011       |
| 65   | 0.018      | 0.011       |

### 10. Maximum allowable deviation in height




# To obtain the maximum allowable deviation value in height, subtract the tolerance value of the dimension H (see the table about the accuracy classes on page ⓐ/142) from the value H1 obtained by means of the following formula:

SBC-ROSA Roller Linear Rail System

- △H1 = X b 10<sup>-4</sup>
- △H1 : Maximum allowable deviation in height (Unit: mm)
- X : Calculation factor
- b : Distance between rails

| Preload class          | P2 (Light) | P3 (Heavy) |
|------------------------|------------|------------|
| X (Calculation factor) | 1.7x10⁴    | 1.2x10-4   |

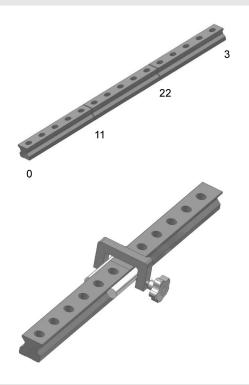
### 11. Maximum allowable deviation in longitudinal direction



To obtain maximum allowable deviation value in longitudinal direction, subtract the tolerance value of the dimension H (see the table about the accuracy classes on page ⓐ)/142) from the value H2 obtained by means of the following formula

△H2 = Y • I

• △H2 : Maximum allowable deviation in longitudinal direction (Unit: mm)


• Y : Calculation factor

• I : Distance between carriages

| Carriage type          | LC/SC                | LL/SL   |
|------------------------|----------------------|---------|
| Y (Calculation factor) | 4.5x10 <sup>-₅</sup> | 3.5x10⁵ |

### SBC-ROSA Roller Linear Rail System

### General instructions for the assembly of the guides



### [Comply with the following instructions]

- Always put the mono-guide against the supporting end stop (if available)
- Always tighten the screws in an alternating way by starting from the center of the guide and preferably by using a dynamometric wrench
- The guides formed by several parts are marked with numbers in the joints. During the assembly, you must match the aforesaid numbers. Always check that the guides are aligned one close to the other without leaving empty spaces, even tiny ones.
- As for the assembly of the guides in several parts (no side end stop), align the joints of the guides by using ground shafts and clamp, as shown in the picture.

### Mono-guide accessories







### [Rail hole caps]

### Plastic caps - TPMG

They are used to cover the fastening holes of the guide and are included in the standard supply. The caps should not to be used in case of metal chips, especially if they are not ; indeed, it is advisable to use the caps with protected axes or in environments that are not very dirty.

SBC-ROSA Roller Linear Rail System

**Linear Rail System** 

### Brass caps - TOMG

They are used in case of thermal and mechanical stresses, metal chips or rather if an absolutely smooth guide surface is required.

They are supplied on demand in the order.

### Steel caps - TAMG

They are used in case of high thermal or mechanical stresses or in working environments characterized by chip removal. The covering cap includes a cap and a pressure collar supplied apart. Before installing the caps into the guide holes, both parts must be embedded. In order to correctly fix them, it is advisable to use the specific assembly tool DMT.

They are supplied on demand in the order



## **(b) Ball Scr**e

### Linear Rail System

### SBC-ROSA Roller Linear Rail System

**Linear Rail System** 

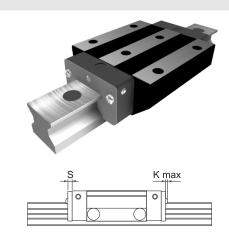
### [DMT- Assembly tool for steel caps(TAMG)]



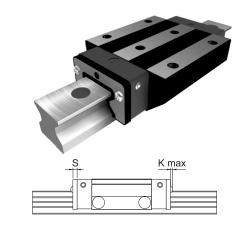
The assembly tool DMT is used to correctly assemble the steel caps that are introduced into the relevant holes by manually pressing the lever.

It is supplied on demand in the order

### [Strip to protect and cover the fastening holes of the guide]




The use of the covering strip considerably simplifies the performance of the operations during the fastening of the mono-guide. After having assembled and aligned it on the bedplate of machine, the protect strip will be introduced into the groove of the guide, and then fastened with two heads at the ends.


### - Advantages -

- Corrosion-resistant material (stainless steel).
- Particularly tough configuration thanks to the increased thickness..
- Anchoring to a special precision groove and fastening to the ends with two closing heads.
- Prevent closing caps from being used, thus considerably reducing the general assembly times and makes the wiping action more effective.

### [End seal TPA]



### [Additional end seal TPNBR/TPVIT]



| Size | S | К   |
|------|---|-----|
| 25   | 6 | 2.6 |
| 35   | 6 | 3.3 |
| 45   | 6 | 4   |
| 55   | 7 | 4.8 |
| 65   | 7 | 4.8 |

The stainless steel wiper protects the scraper rings that are built-in in the front heads of the carriage and for possible additional end seals TPNBR/TPVIT.

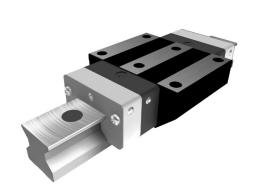
SBC-ROSA Roller Linear Rail System

In particular, it is effective in the presence of hot chips and coarse dirt particles thanks to the minimum clearance between the wiper and the guide

| Size | S   | К   |
|------|-----|-----|
| 25   | 1   | 2.6 |
| 35   | 1   | 3.3 |
| 45   | 1.5 | 4   |
| 55   | 2   | 4.8 |
| 65   | 2   | 4.8 |

The end seals TPNBR and TPVIT offer an effective additional protection to the mono-guides that work in very dirty environments. They can be directly assembled on the carriages without the need to disassemble the latter.

- Features of the NBR version -
- Excellent stability in the presence of oil
- Excellent mechanical features
- Working temperature from -30°C to +110°C

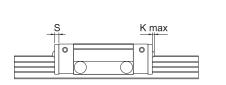

### - Features of the VITON version -

- Excellent stability in the presence of aggressive coolants and oils
- Excellent mechanical features
- Working temperature from -30°C to +200°C

### SBC-ROSA Roller Linear Rail System

### Long-life lubrication cartridge TLL

**Linear Rail System** 




The cartridge TLL allows a capillary lubrication of the slide ways by using minimum quantities of lubricant. Indeed, by using a special synthetic material, just the necessary quantity of lubricant flows : this way, the re-lubrication time will be extended as much as possible.

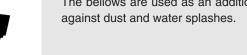
It is advisable to use it in dry and clean environments, always in combination with the steel wipers TPA.

- The distribution of the lubricant is assured in all assembly positions.
- The cartridges TLL can be recharged
- Use only high-quality mineral oil (DIN 51517CLP or DIN 51524HLP with ISO VG 220 viscosity)
- Lubrication interval up to 5000km or maximum every 12 months (variable according to the use)
- Reduction of the costs relating to the lubrication system
- Low environmental impact thanks to a minimum consumption of lubricant

### \* The TLL lubrication units should not be used in the presence of lubricating oil-coolants in direct contact with the guides.



| Size | S  | К   |
|------|----|-----|
| 25   | 16 | 2.6 |
| 35   | 20 | 3.3 |
| 45   | 23 | 4   |
| 55   | 27 | 4.8 |
| 65   | 32 | 4.8 |


### Lin Clamp clamping system



Lin Clamp clamping systems were designed for static and dynamic locks(emergency).

SBC-ROSA Roller Linear Rail System

- Pneumatic compact system
- Active (locking with air) or passive (locking with no air) system
- Excellent locking ability
- Available for all sizes
- Lower costs compared with hydraulic and electric solutions



The bellows are used as an additional protection

### Assembly guide

**Bellows** 



The plastic-material assembly guide is used to transport the carriage and if it is necessary to remove the carriage from the mono-guide

### SBC-ROSA Roller Linear Rail System

### SBC-ROSA Roller Linear Rail System

**Linear Rail System** 

### [Recommend grease and oil]

Greasing

It is advisable to use the following grease and oil types

- Grease according to the DIN 51825 standard, type KP2K-20 (high-performance grease based on lithium soap)
- Liquid grease according to the DIN 51826 standard, types : NLGI 00 and NLGI 000
- Mineral oil according to the DIN 51517 standard, type CLP, or according to the DIN 51524 standard, type HLP
- Viscosity range : from ISO VG 68 to ISO VG 220

### [Initial lubrication before the start-up]

Immediately after the assembly, the carriages must be lubricated with the quantities that are specified in the table ; move the carriage for a stroke that at least corresponds to three times its own lengtht.

| Quantity                    | MG     | <b>3</b> 25 | MG     | à35 | MG     | i45 | MG     | i55 | MG     | G65 |
|-----------------------------|--------|-------------|--------|-----|--------|-----|--------|-----|--------|-----|
| (cm <sup>3</sup> /carriage) | Grease | Oil         | Grease | Oil | Grease | Oil | Grease | Oil | Grease | Oil |
| LC/SC                       | 1.9    | 0.0         | 2.9    | 10  | 5.3    | 1 / | 8.4    | 10  | 15     | 26  |
| LL/SL                       | 2.2    | 0.8         | 3.7    | 1.0 | 6.6    | 1.4 | 10.6   | 1.8 | 18.9   | 3.6 |

### [Recommended lubrication interval and lubrication values]

The table specifies the correct values and lubrication interval. In case of short stroke (shorter than twice the length L of the carriage), apply a double quantity of lubricant by means of 2 lubrication points (one per each head).

| Load    | MG     | à25                           | MG     | 335                           | MG     | <b>3</b> 45                   | MG     | à55                           | MG     | G65                          |
|---------|--------|-------------------------------|--------|-------------------------------|--------|-------------------------------|--------|-------------------------------|--------|------------------------------|
| LUdu    | Grease | Oil                           | Grease | Oil                           | Grease | Oil                           | Grease | Oil                           | Grease | Oil                          |
| C/P>8   | 800 km | 400 km<br>/1.2cm <sup>3</sup> | 500km  | 250 km<br>/1.2cm <sup>3</sup> | 300 km | 125 km<br>/1.2cm <sup>3</sup> | 200 km | 100 km<br>/1.5cm <sup>3</sup> | 100 km | 50 km<br>/1.5cm <sup>3</sup> |
| 5≤C/P<8 | 500 km | 250 km<br>/0.7cm³             | 300 km | 180 km<br>/1.0cm³             | 150 km | 90 km<br>/0.9cm³              | 100 km | 60 km<br>/1.2cm³              | 50 km  | 40 km<br>/1.5cm³             |
| 3≤C/P<5 | 200 km | 100 km<br>/0.4cm <sup>3</sup> | 150 km | 80 km<br>/0.6cm <sup>3</sup>  | 80 km  | 40 km<br>/0.45cm <sup>3</sup> | 50 km  | 30 km<br>/0.5cm³              | 25 km  | 20 km<br>/0.6cm <sup>3</sup> |
| 2≤C/P<3 | 120 km | 40 km<br>/0.2cm <sup>3</sup>  | 80 km  | 30 km<br>/0.25cm <sup>3</sup> | 40 km  | 20 km<br>/0.25cm <sup>3</sup> | 25 km  | 15 km<br>/0.25cm³             | 15 km  | 10 km<br>/0.3cm <sup>3</sup> |

### (Recommended lubrication interval and lubrication values)

| Quantity (cm3/carriage) | MG25 | MG35 | MG45 | MG55 | MG65 |
|-------------------------|------|------|------|------|------|
| LC/SC                   | 0.5  | 1.2  | 2.2  | 3.2  | 5.9  |
| LL/SL                   | 0.6  | 1.4  | 2.6  | 4    | 7.4  |

### (Minimum quantity of oil allowed by impulse)

| cm3/impuls                     | MG25 | MG35 | MG45 | MG55 | MG65 |
|--------------------------------|------|------|------|------|------|
| Horizontal                     | 0.06 | 0.1  | 0.1  | 0.16 | 0.2  |
| Vertical                       | 0.06 | 0.1  | 0.1  | 0.16 | 0.2  |
| Horizontal-Vertical, Crosswise | 0.08 | 0.15 | 0.15 | 0.25 | 0.3  |

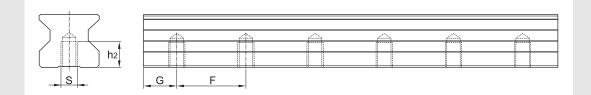
\* Please set the lubrication interval and lubrication values according to working condition and working environments.

### Nipple

| Grease nipple            | Connector              | Quick couplings                     |
|--------------------------|------------------------|-------------------------------------|
| 9,8<br>M6x1              | 18<br>12<br>M6x1 G 1/8 | 16<br>M6x1 Ø4                       |
| 16,3<br>m<br>M6x1 0<br>9 |                        | 23<br>Ø<br>Ø<br>M6x1<br>Ø<br>Ø<br>4 |
| 12,5                     |                        |                                     |

# Ball Screw

## Мен

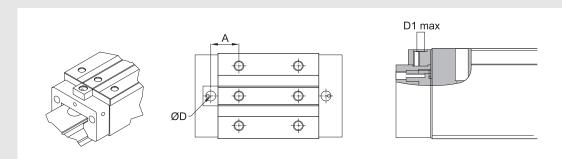

### Linear Rail System

SBC-ROSA Roller Linear Rail System

### SBC-ROSA Roller Linear Rail System

Linear Rail System

### Bottom mounting rail




| Size | S   | h2 | G    | F    |
|------|-----|----|------|------|
| MG25 | M6  | 12 | 14   | 30   |
| MG35 | M8  | 15 | 19   | 40   |
| MG45 | M12 | 19 | 25   | 52.5 |
| MG55 | M14 | 22 | 29   | 60   |
| MG65 | M16 | 25 | 36.5 | 75   |

| [Top | lubri | icati | on] |
|------|-------|-------|-----|
|      |       |       |     |

All carriage types are prepared for top lubrication. SC and SL models are provided with a spacer equipped with O-ring to compensate for the difference in height. Top lubrication must be specified in the order.

It is not possible to drill the heads after the assembly, as the chips created during this operation may clog the lubrication channels.



|      |               |      |      |      |      | (Unit : mm) |
|------|---------------|------|------|------|------|-------------|
| Item | Carriage type | MG25 | MG35 | MG45 | MG55 | MG65        |
|      | LC            | 14   | 15.5 | 17.6 | 21.5 | 29          |
| А    | LL            | 23.7 | 27   | 33.9 | 42.5 | 54.3        |
| ~    | SC            | 19   | 21.5 | 27.6 | 31.5 | 49          |
|      | SL            | 21.2 | 22   | 33.9 | 42.5 | 49.2        |
| D    | -             | 10   | 10   | 10   | 10   | 13          |
| D1   | -             | 3    | 4.5  | 4.5  | 4.5  | 3.5         |

# Ball Screw

© Support U

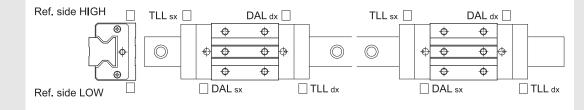
### Linear Rail System

SBC-ROSA Roller Linear Rail System



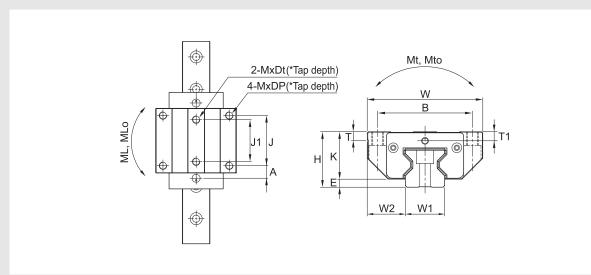
### SBC-ROSA Roller Linear Rail System

Ordering example


| <u>MG35 SC – TB – 2 – P2 – 598 – Q1 –R – II</u>                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------|
| [1] [2] [3] [4] [5] [6] [7] [8] [9]                                                                                                  |
| [1] Model                                                                                                                            |
| [2] Block type : LC, LL, SC, SL                                                                                                      |
| [3] Additional seal : None (standard)<br>TP - TPA<br>TB - TPNBR<br>TV - TPVIT<br>TAB - TPA+TPNBR<br>TAV - TPA+TPVIT<br>TLL - TPA+TLL |
| [4] Number of carriages on the rail                                                                                                  |
| [5] Preload : P2, P3                                                                                                                 |
| [6] Rail length                                                                                                                      |
| [7] Accuracy class : Q0, Q1, Q2, Q3                                                                                                  |
| [8] Surface treatment : None (standard)                                                                                              |
| [9] Number of rails per axis : None (I), II, III, IV                                                                                 |
| We recommend purchasing the block and rail as assembled set if high accuracy and high sti<br>are required.                           |

× Please indicate the G (distance from rail end to first hole) dimension if G is not standard

ffness


### Ordering sheet

| Company                                               |                                                                             |
|-------------------------------------------------------|-----------------------------------------------------------------------------|
| TEL./FAX.                                             | (TEL.) / (FAX.)                                                             |
| Person in charge                                      |                                                                             |
| Date                                                  |                                                                             |
| Ordering items                                        |                                                                             |
| G dimension<br>(distance from rail end to first hole) | mm                                                                          |
| Stainless steel cover                                 | Yes None                                                                    |
| Rail hole cap specification                           | <ul> <li>TPMG(Plastic)</li> <li>TOMG(Brass)</li> <li>TAMG(Steel)</li> </ul> |
| Rail hole cap quantity                                | PCS / 1Rail                                                                 |
| Assembly tool for steel caps                          | DMT                                                                         |
| Additional seal specification                         | TPA TPNBR TPVIT                                                             |
| Long-life lubrication cartridge                       | TLL                                                                         |
| Bellows                                               | Minimum: mm / Max: mm                                                       |
| Surface treatment                                     |                                                                             |
| Lubricant type                                        | Grease (type: )                                                             |
| Nipple position and type                              |                                                                             |



### SBC-ROSA Roller Linear Rail System

### MG-LC/LL



|         | Мо | unting | dimens | ion | Block dimension   |     |    |     |    |    |      |       |      |      |     |      |
|---------|----|--------|--------|-----|-------------------|-----|----|-----|----|----|------|-------|------|------|-----|------|
| Model   | н  | w      |        | Е   | Mounting tap hole |     |    |     |    |    |      |       | т    | к    | T1  | A    |
|         | 11 | vv     |        | Ľ   | В                 | J   | J1 | М   | DP | S  | Dt   | L1    | 1    | rx – |     | ~    |
| MG25 LC | 36 | 70     | 90.2   | 5.5 | 57                | 45  | 40 | M8  | 9  | 11 | 6.5  | 62    | 7.5  | 29.5 | 5.5 | 14   |
| MG25 LL | 36 | 70     | 109.7  | 5.5 | 57                | 45  | 40 | M8  | 9  | 11 | 6.5  | 81.5  | 7.5  | 29.5 | 5.5 | 23.7 |
| MG35 LC | 48 | 100    | 119.3  | 7   | 82                | 62  | 52 | M10 | 12 | 15 | 10   | 80    | 8    | 41   | 7.9 | 15.5 |
| MG35 LL | 48 | 100    | 142.3  | 7   | 82                | 62  | 52 | M10 | 12 | 15 | 10   | 103   | 8    | 41   | 7.9 | 27   |
| MG45 LC | 60 | 120    | 147.3  | 10  | 100               | 80  | 60 | M12 | 15 | 18 | 12   | 101.3 | 10   | 50   | 8   | 17.6 |
| MG45 LL | 60 | 120    | 179.8  | 10  | 100               | 80  | 60 | M12 | 15 | 18 | 12   | 133.8 | 10   | 50   | 8   | 33.9 |
| MG55 LC | 70 | 140    | 173    | 13  | 116               | 95  | 70 | M14 | 18 | 20 | 13.5 | 120   | 12   | 57   | 9   | 21.5 |
| MG55 LL | 70 | 140    | 215    | 13  | 116               | 95  | 70 | M14 | 18 | 20 | 13.5 | 162   | 12   | 57   | 9   | 42   |
| MG65 LC | 90 | 170    | 221.8  | 12  | 142               | 110 | 82 | M16 | 15 | 23 | 19.5 | 159.8 | 15.5 | 78   | 22  | 29   |
| MG65 LL | 90 | 170    | 272.3  | 12  | 142               | 110 | 82 | M16 | 15 | 23 | 19.5 | 210.3 | 15.5 | 78   | 22  | 54.3 |

• C (Basic dynamic load rating), Co (Basic static load rating)

Mt (Torsional moment of dynamic load), Mto (Torsional moment of static load)

**③** ML(Longitudinal moment of dynamic load), MLo (Longitudinal moment of static load)

SBC-ROSA Roller Linear Rail System

L1 ØD 0 0 H1 4-øS Ød F G L0

Rail dimension

W1 W2

23 23.5 23.5 23

34 34

45 45

53 53

63

33

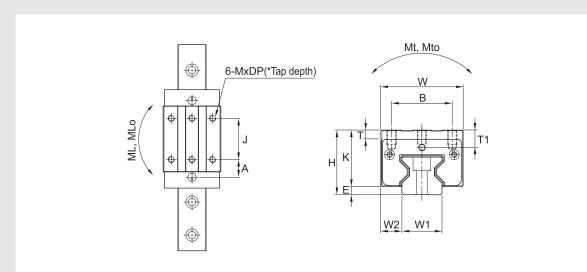
33 37.5

37.5 43.5

43.5

53.5 63 53.5 ML, MLo

(Unit : mm) Mass


|    |      |      |    |           |      |               |               |             | louu     |       | Mon   | IVIGSS |       |                                                                                             |      |
|----|------|------|----|-----------|------|---------------|---------------|-------------|----------|-------|-------|--------|-------|---------------------------------------------------------------------------------------------|------|
| H1 | H1   | F    | E  | Bolt hole | Э    | G             | Max<br>langth | rati<br>[kl | <b>U</b> |       | [kN   | Block  | Rail  |                                                                                             |      |
|    | •    | d    | D  | h         | G    | of rail<br>L0 | С             | Co          | Mt       | Mto   | M∟    | MLo    | [kg]  | Rail       [kg/m]       3.4       3.4       6.5       10.7       10.7       15.2       22.5 |      |
|    | 24.5 | 30   | 7  | 11        | 11.5 | 14            | 4000          | 28.7        | 57.6     | 0.43  | 0.86  | 0.28   | 0.57  | 0.7                                                                                         | 3.4  |
|    | 24.5 | 30   | 7  | 11        | 11.5 | 14            | 4000          | 38.9        | 76.8     | 0.58  | 1.15  | 0.49   | 0.97  | 0.9                                                                                         | 3.4  |
|    | 32   | 40   | 9  | 15        | 17   | 19            | 4000          | 53.3        | 99       | 1.17  | 2.19  | 0.67   | 1.25  | 1.7                                                                                         | 6.5  |
|    | 32   | 40   | 9  | 15        | 17   | 19            | 4000          | 72.6        | 136      | 1.59  | 3.01  | 1.18   | 2.24  | 2.2                                                                                         | 6.5  |
|    | 40   | 52.5 | 14 | 20        | 19   | 25            | 4000          | 95          | 184      | 2.61  | 5.07  | 1.53   | 2.97  | 3.3                                                                                         | 10.7 |
|    | 40   | 52.5 | 14 | 20        | 19   | 25            | 4000          | 119.5       | 242.2    | 3.29  | 6.67  | 2.44   | 4.95  | 4.3                                                                                         | 10.7 |
|    | 48   | 60   | 16 | 24        | 22   | 29            | 4000          | 132.6       | 256      | 4.50  | 8.70  | 2.57   | 4.98  | 5.1                                                                                         | 15.2 |
|    | 48   | 60   | 16 | 24        | 22   | 29            | 4000          | 176         | 351      | 5.97  | 11.91 | 4.47   | 8.91  | 7                                                                                           | 15.2 |
|    | 55   | 75   | 18 | 26        | 26   | 36.5          | 4000          | 212         | 414      | 8.10  | 15.78 | 5.21   | 10.14 | 9.3                                                                                         | 22.5 |
|    | 55   | 75   | 18 | 26        | 26   | 36.5          | 4000          | 276         | 579      | 10.53 | 22.10 | 8.98   | 11.84 | 13.5                                                                                        | 22.5 |

Basic load

### SBC-ROSA Roller Linear Rail System

MG-SC/SL

(a) / 158



| Model   | M  | ounting | dimensio | n   | Block dimension |          |          |    |       |      |      |      |      |  |  |
|---------|----|---------|----------|-----|-----------------|----------|----------|----|-------|------|------|------|------|--|--|
|         | н  | w       | L        | Е   | I               | Mounting | tap hole | Э  | L1    | т    | к    | T1   | A    |  |  |
|         | 11 |         | Ľ        |     | В               | J        | М        | DP |       |      |      |      |      |  |  |
| MG25 SC | 40 | 48      | 90.2     | 6.5 | 35              | 35       | M6       | 9  | 62    | 7.5  | 33.5 | 9.5  | 19   |  |  |
| MG25 SL | 40 | 48      | 109.7    | 6.5 | 35              | 50       | M6       | 9  | 81.5  | 7.5  | 33.5 | 9.5  | 21.2 |  |  |
| MG35 SC | 55 | 70      | 119.3    | 7   | 50              | 50       | M8       | 12 | 80    | 8    | 48   | 14.9 | 21.5 |  |  |
| MG35 SL | 55 | 70      | 142.3    | 7   | 50              | 72       | M8       | 12 | 103   | 8    | 48   | 14.9 | 22   |  |  |
| MG45 SC | 70 | 86      | 147.3    | 10  | 60              | 60       | M10      | 18 | 101.3 | 10   | 60   | 18   | 27.6 |  |  |
| MG45 SL | 70 | 86      | 179.8    | 10  | 60              | 80       | M10      | 18 | 133.8 | 10   | 60   | 18   | 33.9 |  |  |
| MG55 SC | 80 | 100     | 173      | 13  | 75              | 75       | M12      | 19 | 120   | 12   | 67   | 19   | 31.5 |  |  |
| MG55 SL | 80 | 100     | 215      | 13  | 75              | 95       | M12      | 19 | 162   | 12   | 67   | 19   | 42   |  |  |
| MG65 SC | 90 | 126     | 221.8    | 12  | 76              | 70       | M16      | 15 | 159.8 | 15.5 | 78   | 22   | 49   |  |  |
| MG65 SL | 90 | 126     | 272.3    | 12  | 76              | 120      | M16      | 15 | 210.3 | 15.5 | 78   | 22   | 49.2 |  |  |

• C (Basic dynamic load rating), Co (Basic static load rating)

2 Mt (Torsional moment of dynamic load), Mto (Torsional moment of static load)

(3) ML(Longitudinal moment of dynamic load), MLo (Longitudinal moment of static load)

Linear Rail System

SBC-ROSA Roller Linear Rail System

Moment

[kN •m]

M∟

0.28

0.49

0.67

1.18

1.53

2.44

2.57

4.47

5.21

8.98

Mto

0.86

1.15

2.19

3.01

5.07

6.67

8.70

11.91

15.78

22.10

(Unit : mm)

Rail

[kg/m]

3.4

3.4

6.5

6.5

10.7

10.7

15.2

15.2

22.5

22.5

Mass

Block

[kg]

0.6

0.8

1.6

2

3.1

4.1

4.7

6.2

8.5

12.7

MLo

0.57

0.97

1.25

2.24

2.97


4.95

4.98

8.91

10.14

11.84



Basic load

rating

[kN]

Co

57.6

76.8

99

136

184

256

351

414

579

119.5 242.2

Mt

0.43

0.58

1.17

1.59

2.61

3.29

4.50

5.97

8.10

10.53

С

28.7

38.9

53.3

72.6

95

132.6

176

212

276

Max

langth

of rail

L0

4000

4000

4000

4000

4000

4000

4000

4000

4000

4000

G

14

14

19

19

25

25

29

29

36.5

36.5

Rail dimension

d

7

7

9

9

14

14

16

16

18

18

W1 W2 H1

12.5

18

18

20.5

20.5

23.5

23.5

31.5

31.5

12.5 24.5

24.5 30

32

32

40 52.5

40 52.5

48

48

55

55

23

23

34

34

45

45

53

53

63

63

F

30

40

40

60

60

75

75

Bolt hole

D

11

11

15

15

20

20

24

24

26

26

h

11.5

11.5

17

17

19

19

22

22

26

26